mobilenet详解_小白学PyTorch | 12 SENet详解及PyTorch实现

【机器学习炼丹术】的学习笔记分享 <>

小白学PyTorch | 11 MobileNet详解及PyTorch实现

小白学PyTorch | 10 pytorch常见运算详解

小白学PyTorch | 9 tensor数据结构与存储结构

小白学PyTorch | 8 实战之MNIST小试牛刀

小白学PyTorch | 7 最新版本torchvision.transforms常用API翻译与讲解

小白学PyTorch | 6 模型的构建访问遍历存储(附代码)

小白学PyTorch | 5 torchvision预训练模型与数据集全览

小白学PyTorch | 4 构建模型三要素与权重初始化

小白学PyTorch | 3 浅谈Dataset和Dataloader

小白学PyTorch | 2 浅谈训练集验证集和测试集

小白学PyTorch | 1 搭建一个超简单的网络

小白学PyTorch | 动态图与静态图的浅显理解

这个系列《小白学PyTorch》的所有代码和数据集放在了公众号【机器学习炼丹术】后台,回复【pytorch】获取(还在更新的呢):

513bc9936641dd14060fc00f0dc7aa90.png

当然有什么问题、有事没事都可以找炼丹兄交流哈哈,炼丹兄是一个非Top学校的跨专业应届研究生。

8a011b479beed7c2062c228771eb6bf1.png

↑↑↑扫码加炼丹兄好友↑↑↑

参考目录:

  • 1 网络结构

  • 2 参数量分析

  • 3 PyTorch实现与解析

上一节课讲解了MobileNet的一个DSC深度可分离卷积的概念,希望大家可以在实际的任务中使用这种方法,现在再来介绍EfficientNet的另外一个基础知识,Squeeze-and-Excitation Networks压缩-激活网络

1 网络结构

b7d4e1aa135588829cf0697b2b36df5e.png

可以看出来,左边的图是一个典型的Resnet的结构,Resnet这个残差结构特征图求和而不是通道拼接,这一点可以注意一下

这个SENet结构式融合在残差网络上的,我来分析一下上图右边的结构:

  • 输出特征图假设shape是的;
  • 一般的Resnet就是这个特征图经过残差网络的基本组块,得到了输出特征图,然后输入特征图和输入特征图通过残差结构连在一起(通过加和的方式连在一起);
  • SE模块就是输出特征图先经过一个全局池化层,shape从变成了,这个就变成了一个全连接层的输入啦
    • 压缩Squeeze:先放到第一个全连接层里面,输入个元素,输出,r是一个事先设置的参数;

    • 激活Excitation:在接上一个全连接层,输入是个神经元,输出是个元素,实现激活的过程;

  • 现在我们有了一个个元素的经过了两层全连接层的输出,这个C个元素,刚好表示的是原来输出特征图中C个通道的一个权重值,所以我们让C个通道上的像素值分别乘上全连接的C个输出,这个步骤在图中称为Scale而这个调整过特征图每一个通道权重的特征图是SE-Resnet的输出特征图,之后再考虑残差接连的步骤。

在原文论文中还有另外一个结构图,供大家参考:164c4b8fcba8d3bac4c131ccb2431384.png

2 参数量分析

每一个卷积层都增加了额外的两个全连接层,不够好在全连接层的参数非常小,所以直观来看应该整体不会增加很多的计算量。Resnet50的参数量为25M的大小,增加了SE模块,增加了2.5M的参数量,所以大概增加了10%左右,而且这2.5M的参数主要集中在final stage的se模块,因为在最后一个卷积模块中,特征图拥有最大的通道数,所以这个final stage的参数量占据了增加的2.5M参数的96%。

这里放一个几个网络结构的对比:e7ce2be49bc4f970e2aa566cf6d9396d.png

3 PyTorch实现与解析

先上完整版的代码,大家可以复制本地IDE跑一跑,如果代码有什么问题可以联系我:

import torch
import torch.nn as nn
import torch.nn.functional as F

class PreActBlock(nn.Module):
    def __init__(self, in_planes, planes, stride=1):
        super(PreActBlock, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)

        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False)
            )

        # SE layers
        self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1)
        self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)

    def forward(self, x):
        out = F.relu(self.bn1(x))
        shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
        out = self.conv1(out)
        out = self.conv2(F.relu(self.bn2(out)))

        # Squeeze
        w = F.avg_pool2d(out, out.size(2))
        w = F.relu(self.fc1(w))
        w = F.sigmoid(self.fc2(w))
        # Excitation
        out = out * w

        out += shortcut
        return out


class SENet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(SENet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block,  64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def SENet18():
    return SENet(PreActBlock, [2,2,2,2])


net = SENet18()
y = net(torch.randn(1,3,32,32))
print(y.size())
print(net)

输出和注解我都整理了一下:b8e44b675825a59058168e121dd45ef6.png

d92ec85098f775f02a666c8c0e9927a5.png
- END - <>

小白学论文 | EfficientNet强在哪里

小白学论文 | 神经网络初始化Xavier

小白学论文 | 端侧神经网络GhostNet(2019)

小白学目标检测 | RCNN, SPPNet, Fast, Faster

小白学图像 | BatchNormalization详解与比较

小白学图像 | Group Normalization详解+PyTorch代码

小白学图像 | 八篇经典CNN论文串讲

图像增强 | CLAHE 限制对比度自适应直方图均衡化

小白学卷积 | 深入浅出卷积网络的平移不变性

小白学卷积 | (反)卷积输出尺寸计算

损失函数 | 焦点损失函数 FocalLoss 与 GHM

<>

小白学ML | 随机森林 全解 (全网最全)

小白学SVM | SVM优化推导 + 拉格朗日 + hingeLoss

小白学LGB | LightGBM = GOSS + histogram + EFB

小白学LGB | LightGBM的调参与并行

小白学XGB | XGBoost推导与牛顿法

评价指标 | 详解F1-score与多分类F1

小白学ML | Adaboost及手推算法案例

小白学ML | GBDT梯度提升树

小白学优化 | 最小二乘法与岭回归&Lasso回归

小白学排序 | 十大经典排序算法(动图)

杂谈 | 正态分布为什么如此常见

Adam优化器为什么被人吐槽?

机器学习不得不知道的提升技巧:SWA与pseudo-label

<>

小白面经 | 快手 AI算法岗 附答案解析

小白面经 | 拼多多 AI算法岗 附带解析

【小白面经】八种应对样本不均衡的策略

【小白面经】之防止过拟合的所有方法

【小白面经】梯度消失爆炸及其解决方法

【小白面经】 判别模型&生成模型

<>

【小白健身】徒手健身40个动作(gif)

【小白健身】弹力带轻度健身gif动图

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值