命题
命题:命题是⼀个能判断真假的陈述句。
原⼦命题:不包含其它命题成分的命题称为简单命题 (原⼦命题)。
复合命题:⾄少包含⼀个其它命题成分的命题称为复合命题。
⽀命题:组成复合命题的那些命题称为⽀命题。
联结词
否定词 ¬:对应于“并⾮…...”
合取词 ∧:对应于“…... 并且…...”
析取词 ∨:对应于“…... 或者…...”
蕴含词 →:对应于“如果…... 那么…...”
等价词 ↔:对应于“…... 当且仅当…...”
真值函数和真值表
设 D = {0, 1},⼀个映射 f : → D 称为⼀个 n 元真值函数。真值函数和真值表一一对应。
比如有p和q两个命题变元,每个变元有0和1两种情况,则p和q的真值表有(0,0)、(0,1)、(1,0)、(1,1)。
命题变元或者变项
表⽰命题的变元称为命题变元或命题变项。命题变项的集合⽤ Atom(L p ) 表⽰。
命题指派或赋值
任意⼀个映射 v : Atom(L p ) → {0, 1} 称为命题演算的⼀个指派或赋值 (valuation)。并且对 p ∈ Atom(L p ),将 v(p) 记作 p v,⾃然有 p v ∈ {0, 1}。
指派是对每一个变元赋值的行为,一般赋值为0或者1。
命题公式
1 Atom(L p ) 中的元素是命题公式。
2 如果 A 是命题公式,那么 ¬A 也是命题公式。
3 如果 A,B 是命题公式,那么 A ∧ B,A ∨ B,A → B,A ↔ B 都是命题 公式。
4 只有 1,2,3 确定的表达式才是命题公式。
命题公式集合表⽰为 Form(L p )。
命题弄假和弄真
设 v 是⼀个指派(赋值),A ∈ Form(L p ) 是任意⼀个命题公式,若在 v 下,公式 A 的值为真,则称 v 弄真 A,记为 v(A) = 1 或 A v = 1; 若在 v 下,公式 A 的值为假,则称 v 弄假 A,记为 v(A) = 0 或 A v = 0;
命题弄假和弄真就是讲公式赋值为真值或者假值。
1.如果 A 是原⼦公式 p(注释,即公式集只有一个公式),则 A v = p v 且 p v ∈ {0, 1};
2 如果 A = ¬B 且 B v ∈ {0, 1},则当 B v = 1 时,规定 A v = 0;当 B v = 0 时,规定 A v = 1;
3 如果 A = B ∧ C 且 B v ,C v ∈ {0, 1},那么当 B v = 1 且 C v = 1 时,规 定 A v = 1;当 B v = 0 或 C v = 0 时,规定 A v = 0;
4 如果 A = B ∨ C 且 B v ,C v ∈ {0, 1},那么当 B v = 0 且 C v = 0 时,规 定 A v = 0;当 B v = 1 或 C v = 1 时,规定 A v = 1;
5 如果 A = B → C 且 B v ,C v ∈ {0, 1},那么当 B v = 1 且 C v = 0 时, 规定 A v = 0;当 B v = 0 或 C v = 1 时,规定 A v = 1;
6 如果 A = B ↔ C 且 B v ,C v ∈ {0, 1},那么当 B v = C v 时,规定 A v = 1;当 B v ̸= C v 时,规定 A v = 0;
1 (¬A) v = 1 − A v
2 (A ∧ B) v = A v · B v
3 (A ∨ B) v = A v + B v − A v · B v
4 (A → B) v = 1 − A v + A v · B v
5 (A ↔ B) v = A v · B v + (1 − A v ) · (1 − B v )
永真式和永假式
设 A ∈ Form(L p ),则
1 若对任意的赋值 v,都有 A v = 1,则称 A 为永真式或重⾔式 (tautology)。
2 若对任意的赋值 v,都有 A v = 0,则称 A 为永假式或⽭盾式 (contradiction)。
3 若存在赋值 v,使得 A v = 1,则称 A 为可满⾜的(satisfiable)。
逻辑蕴涵
设 Γ ⊆ Form(L p ),A ∈ Form(L p )。如果对任意的赋值 v,当 v 对 Γ 中的 任⼀公式赋值为 1 时(即对任意的 B ∈ Γ,有 B v = 1),有 v 对命题公式 A 的赋值也为 1(即 A v = 1),则称 Γ 可以语义推出(semantic deduce) A,或称 Γ 可以逻辑推出(logically deduce)A,或称 Γ 可以逻辑蕴含 (logically conclude)A,或称 A 是 Γ 的逻辑结果(logical result),记为 Γ ⊨ A 或 Γ ⇒ A。
逻辑等价
设 A,B ∈ Form(L p ),如果 A ⇒ B 并且 B ⇒ A,则称 A 和 B 逻辑等价, 记为 A ⇔ B.
逻辑蕴涵和逻辑等价的性质
A ⇒ B 当且仅当 A → B 是永真式。
A ⇔ B 当且仅当 A ↔ B 是永真式。
1.对任意的 A ∈ Form(L p ) 都有 A ⇔ A.
2 对任意的 A,B ∈ Form(L p ),若 A ⇔ B,则 B ⇔ A.
3 对任意的 A,B,C ∈ Form(L p ),若 A ⇔ B,B ⇔ C,则 A ⇔ C.
逻辑等价式
设 A、B 和 C 是任意的命题公式,分别⽤ 1 和 0 表⽰重⾔式和⽭盾式,则
1 ¬¬A ⇔ A(对合律);
2 A ∧ A ⇔ A;A ∨ A ⇔ A(幂等律);
3 A ∧ B ⇔ B ∧ A;A ∨ B ⇔ B ∨ A(交换律);
4 (A ∧ B) ∧ C ⇔ A ∧ (B ∧ C);(A ∨ B) ∨ C ⇔ A ∨ (B ∨ C(结合律); )
5 A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C);A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ (A ∨ C) (分配律);
6 A ∧ (A ∨ B) ⇔ A;A ∨ (A ∧ B) ⇔ A(吸收律);
7 ¬(A ∨ B) ⇔ ¬A ∧ ¬B;¬(A ∧ B) ⇔ ¬A ∨ ¬B(德摩根律);
8 A ∧ 1 ⇔ A;A ∨ 0 ⇔ A(同⼀律);
9 A ∧ 0 ⇔ 0;A ∨ 1 ⇔ 1(零⼀律);
10 A ∧ ¬A ⇔ 0;A ∨ ¬A ⇔ 1(排中律);
代入定理
设 A 是含有命题变元 p 的永真式,那么将 A 中 p 的所有出现均代换为 命题公式 B 得到的公式(称为 A 的代⼊实例)仍为永真式。
替换定理
设命题公式 A 含有⼦公式 C(C 为 A 中的符号串并为命题公式),如果 C ⇔ D,那么将 A 中⼦公式 C 的某些出现(未必全部)⽤ D 替换得到公 式 B,必有 A ⇔ B。
析取范式
A⇔A1∨A2∨⋯∨An ,其中 =,,,Ai(i=1,2,…,n) 是基本积,就是都是且关系。
如果析取范式中每个基本积都是永假式,则该范式必定是永假式。
合取范式
A⇔A1∧A2∧…∧An ,其中 =,,,Ai(i=1,2,…,n)是基本和,就是都是或关系。
如果合取范式中每个基本和都是永真式,则该式也必定是永真式。
主析取范式
极⼩项 主析取范式中的合取项
含有 n 个命题变元的命题公式 A(p1, p2, · · · , pn) 共有 2 n 个极⼩项。
每个极⼩项有 2 n 种真值指派,但指派为 1 的只有⼀个。
对同⼀个指派,任意两个不同的极⼩项的真值取值不能同为 1。
所有 2 n 个极⼩项的析取式 ∨ 式逻辑等价于 1。
主合取范式
极⼤项 主合取范式中的析取项
含有 n 个命题变元的命题公式 A(p1, p2, · · · , pn) 共有 2 n 个极⼤项。
每个极⼤项有 2 n 种真值指派,但指派为 0 的只有⼀个。
对同⼀个指派,任意两个不同的极⼤项的真值取值不能同为 0。
所有 2 n 个极⼤项的合取 ∧ 式逻辑等价于 0。
对偶式
在仅含有联结词 ¬, ∧, ∨ 的命题公式 A 中,将 ∧ 换成 ∨,∨ 换成 ∧,0 换成 1,1 换成 0,得到的公式称为 A 的对偶式,记为 A ∗。
1. (A −) − ⇔ A
2. ¬(A ∗ ) ⇔ (¬A) ∗ ⇔ A −
3. ¬A ⇔ (A ∗ ) −
4. ¬(A −) ⇔ (¬A) −
5. (¬A) − ⇔ A ∗
6. (A ∗ ) ∗ = A
A ⇔ B,则 A ∗ ⇔ B ∗。
若 A → B 永真,则 B ∗ → A ∗ 也永真。
内否式
设有命题公式 A(p1, p2, · · · , pn),对 A 中的 pi (i = 1, 2, · · · , n) ⽤ ¬pi 做代⼊所得的结果为 A 的对偶式,记为 A −。
谓词推理
命题逻辑把简单命题作为最基本的单元,不再往下分析。谓词推理将命题进一步细化分为个体、谓词和量词。比如P(x)其中x为个体,P为谓词,量词包括全称量词()和存在量词(
)。