Jensen‘s inequality(詹森不等式)

Jensen’s inequality(詹森不等式)是数学中的一条重要不等式,由丹麦数学家Johan Jensen于1906年提出。它是凸分析和概率论中的一个基本工具,对于理解和证明许多理论概念如期望值、方差、熵以及各种不等式都具有重要作用。
Jensen’s inequality的一般形式可以描述如下:
假设 f f f是定义在实数线上的凸函数,如果 X X X 是一个随机变量,那么:
f ( E [ X ] ) ≤ E [ f ( X ) ] f(E[X]) \leq E[f(X)] f(E[X])E[f(X)]
这里的 E [ X ] E[X] E[X] 表示随机变量 X X X 的期望值。
凸函数的定义: 一个函数 f f f 是凸的,如果对于所有的 x , y x, y x,y和所有的 t t t满足 0 ≤ t ≤ 1 0 \leq t \leq 1 0t1,都有:
f ( t x + ( 1 − t ) y ) ≤ t f ( x ) + ( 1 − t ) f ( y ) f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) f(tx+(1t)y)tf(x)+(1t)f(y)
直观上说,这意味着在凸函数的图形上,任意两点间的线段总是位于函数图形的上方或与之重合。
Jensen’s inequality的几何意义: 在凸函数的情况下,线性组合的函数值不大于函数值的线性组合。换句话说,如果你在凸函数的图像上取两点,然后画一条直线连接这两点,那么这条直线将始终位于这两点之间图像的上方或与之重合。换成期望值的语境,就是随机变量经过凸函数的期望不小于随机变量期望的函数值。
一个简单的例子: f ( x ) = x 2 f(x) = x^2 f(x)=x2,这是一个凸函数。假设随机变量 X X X取值1和-1的概率都是0.5。那么, E [ X ] = 0.5 ⋅ 1 + 0.5 ⋅ ( − 1 ) = 0 E[X] = 0.5 \cdot 1 + 0.5 \cdot (-1) = 0 E[X]=0.51+0.5(1)=0,而 E [ f ( X ) ] = E [ X 2 ] = 0.5 ⋅ 1 2 + 0.5 ⋅ ( − 1 ) 2 = 1 E[f(X)] = E[X^2] = 0.5 \cdot 1^2 + 0.5 \cdot (-1)^2 = 1 E[f(X)]=E[X2]=0.512+0.5(1)2=1。因此, f ( E [ X ] ) = f ( 0 ) = 0 2 = 0 f(E[X]) = f(0) = 0^2 = 0 f(E[X])=f(0)=02=0,我们可以看到 f ( E [ X ] ) = 0 ≤ 1 = E [ f ( X ) ] f(E[X]) = 0 \leq 1 = E[f(X)] f(E[X])=01=E[f(X)],这符合Jensen’s inequality。
Jensen’s inequality也有一个对偶形式,用于凹函数。如果 f f f是凹函数,那么不等式的方向就相反:
f ( E [ X ] ) ≥ E [ f ( X ) ] f(E[X]) \geq E[f(X)] f(E[X])E[f(X)]
这个不等式在信息论、经济学和其他许多领域都有广泛的应用。

  • 27
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值