基于深度强化学习的认知物联网资源分配的策略研究

本文研究了多窃听者环境下的认知物联网(CIoT)系统,提出了一种结合长短期记忆网络(LSTM)、生成对抗网络(GAN)和深度强化学习(DRL)的资源分配方案,以提高系统的保密性能。该方案针对能量采集(EH)和认知无线电(CR)技术结合的CIoT系统,通过动态优化能量采集时间和传输功率,有效增强了系统的保密速率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘 要:能量采集(Energy Harvesting,EH)和认知无线电(Cognitive Radio,CR)技术的组合可为物联网设备提供持续的能量,并有效地提高物联网系统的频谱效率。然而,在衬底模式下的认知物联网(Cognitive Radio IoT,CIoT)系统中,物联网设备之间的无线通信常常遭受窃听攻击。针对存在多窃听者条件下的 CIoT 系统无线通信场景,以保密速率作为系统保密性能指标。为解决所提的资源分配问题,将长短期记忆网络(Long-Term Memory Network,LSTM)、生成对抗网络(Generative Adversarial Networks,GAN)和深度强化学习(Deep Reinforcement Learning,DRL)算法相结合,设计一种联合能量采集时间和传输功率分配方案。数值仿真表明,与其他基准算法相比,所提方法能够有效地提高系统保密性能。

内容目录:

1 系统模型

2 深度强化学习算法设计

2.1 深度强化学习框架设计

2.2 状态空间设计

2.3 动作空间设计

2.4 奖励函数设计

2.5 GAN-DRQN 资源分配算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值