同指数幂相减公式_指数对数幂函数,基础有问题就看这篇!

这篇博客详细介绍了指数函数、指数运算、对数运算和对数函数的基础知识,包括概念、性质、运算法则和图象变化规律。还深入讲解了幂函数,包括图象、性质和函数值的比较方法。对于指数幂相减等基础问题提供了清晰的解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

96962756f3244d19f15bcd4e84f04f15.png

一、指数函数

要点1:指数函数的概念

5907da6348fb417b9fed3371cb6c10ff.png
要点诠释:

(1)形式上的严格性:

98edb49e1e8681df5b50978a088fe28b.png

(2)为什么规定底数a大于零且不等于1:

5ef1c5fdee4e6979e7b8e43cfcf93648.png

要点2:指数函数的图象及性质

b169b459a2099b4e7885243ab33b8250.png
要点诠释:

0c7692f8092dd76ce0878a3eae037f6b.png

要点3:指数函数底数变化与图像分布规律

(1)

72c7bf7754e4244e1de221485de7c99d.png

859504ff5712cb0448a5a3d6d4701eb9.png

(2)特殊函数

cc7d5603d2929c353196faa6f8eff633.png

07715c929e641ff1932b110b94075090.png

要点4:指数式大小比较方法

(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较.

(2)中间量法

(3)分类讨论法

(4)比较法

比较法有作差比较与作商比较两种,其原理分别为:

9f7bab653e62619fe6cd17f49a1b34a6.png

二、指数运算

要点1:整数指数幂的概念及运算性质

1.整数指数幂的概念

50a3a215bec84152117bae52310a18ba.png

2.运算法则

d540398babcc07f1a69d45e4b9aa7edb.png

要点2:根式的概念和运算法则

1.n次方根的定义:

92871bbaf5ffdba59edcb743198c1e05.png

2.两个等式

14f830d8242dc32275522728668916c7.png
要点诠释:

①要注意上述等式在形式上的联系与区别;

ca5882c26d378eeb8d85e2a6002a3ccf.png

要点3:分数指数幂的概念和运算法则

c55e93145363cb609fd2b6d4df3cc27f.png

要点4:有理数指数幂的运算

1.有理数指数幂的运算性质

8026e1a6df88f1fd9250c514905b5e0f.png
要点诠释:

(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;

(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.

579d2d3160f06039251aa9fe7ff1ec46.png

(3)幂指数不能随便约分.

5911d97a6a872cb2e2217fea71f4c34b.png

2.指数幂的一般运算步骤

有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.

底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.

在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),(a±b)2=a2±2ab+b2,(a±b)3=a3±3a2b+3ab2±b3,a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2)的运用,能够简化运算.

三、对数运算

要点1:对数概念

1.对数的概念

c59c8c52f7afd96caddd38c5ba391a0c.png
要点诠释:

cd58117f906b44ce512efb256b8f474a.png

6007bb053ed6e26d17c7b86b59c0cf8e.png

3.两种特殊的对数

61cb1efc9eaf79150ed2fbc99c91d03e.png

4.对数式与指数式的关系

由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.

a6c2146a5181f79c609ab2b5c253a5db.png

由此可见a,b,N三个字母在不同的式子中名称可能发生变化.

要点二、对数的运算法则

89c19038fa52d23cf76210d8e38b5bcf.png

(1) 正因数的积的对数等于同一底数各个因数的对数的和;

40adf51444ad65266f1caa5925dc9be7.png

(2) 两个正数的商的对数等于被乘数的对数减去除数的对数;

1f00afe7ad480ec9a807ae2d126c0e87.png

(3) 正数的幂的对数等于幂的底数的对数乘以幂指数;

8ef9d3c7dad17c79c945e82db164fd83.png
要点诠释:

(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.

如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.

(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来

要点3:对数公式

1.对数恒等式:

b56f1b448a9dce249f7c5c23a5039177.png

2.换底公式

同底对数才能运算,底数不同时可考虑进行换底,

6b1e9e7696c790e9f81603290436095c.png

8beb7615e97d3a21f6d848411da687db.png

当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性:

a63e3f8aeadd03f80d518b2d628e0fe0.png

而且由(2)还可以得到一个重要的结论:

1538acf1d6b4317d900c94df12e0f1b1.png

四、对数函数

要点1:对数函数的概念

68a9510fe39bacc416040cd871e103ee.png

57c9be75219c2aefa74d2f5451d29292.png
要点诠释:

5a444dad18540713312770a6e97a0b48.png

(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论.

要点2:对数函数的图象与性质

b648aa1ced06a5903c21dca5439505d9.png
要点诠释:

96467ace60a2758b07b0d6aa4d0f999a.png

下面介绍一种简单记忆方法,供同学们学习时参考.

2f77a17cada1f54f1d6476050be6eeaf.png

要点3:底数对对数函数图象的影响

1.底数制约着图象的升降.

如图

d634dd95c17b95c08d8e1ed6463cd2b3.png

要点诠释:

由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.

2.底数变化与图象变化的规律

f816120fd0b690ea58e52748c41f2129.png

04e25b0b963b910d9743567bf34589df.png

五、幂函数

要点1:幂函数概念

fadcba059c7d2847599f9efbd7eaa880.png

要点诠释:

96731e864812fda2a536d070d5a4c933.png

要点2:幂函数的图象及性质

1.作出下列函数的图象:

fdd37fcd81f96c1b6d7121a63315eceb.png

e558eb6e03a82d329fc4a0f5edd693b6.png
要点诠释:

6d1e18679f7feca455c2c702b132f956.png

ebc1baa95fa3400f521e48642addaf0f.png

2.作幂函数图象的步骤如下:

(1)先作出第一象限内的图象;

(2)若幂函数的定义域为(0,+∞)或[0,+∞),作图已完成;

若在(-∞,0)或(-∞,0]上也有意义,则应先判断函数的奇偶性;

如果为偶函数,则根据y轴对称作出第二象限的图象;

如果为奇函数,则根据原点对称作出第三象限的图象.

3.幂函数解析式的确定

(1)借助幂函数的定义,设幂函数或确定函数中相应量的值.

(2)结合幂函数的性质,分析幂函数中指数的特征.

f161505ba38933f8bf87805a9626fc0e.png

4.幂函数值大小的比较

(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.

(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小.

(3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值