
一、指数函数
要点1:指数函数的概念

要点诠释:
(1)形式上的严格性:

(2)为什么规定底数a大于零且不等于1:

要点2:指数函数的图象及性质

要点诠释:

要点3:指数函数底数变化与图像分布规律
(1)


(2)特殊函数


要点4:指数式大小比较方法
(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较.
(2)中间量法
(3)分类讨论法
(4)比较法
比较法有作差比较与作商比较两种,其原理分别为:

二、指数运算
要点1:整数指数幂的概念及运算性质
1.整数指数幂的概念

2.运算法则

要点2:根式的概念和运算法则
1.n次方根的定义:

2.两个等式

要点诠释:
①要注意上述等式在形式上的联系与区别;

要点3:分数指数幂的概念和运算法则

要点4:有理数指数幂的运算
1.有理数指数幂的运算性质

要点诠释:
(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;
(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.

(3)幂指数不能随便约分.

2.指数幂的一般运算步骤
有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.
底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.
在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),(a±b)2=a2±2ab+b2,(a±b)3=a3±3a2b+3ab2±b3,a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2)的运用,能够简化运算.
三、对数运算
要点1:对数概念
1.对数的概念

要点诠释:


3.两种特殊的对数

4.对数式与指数式的关系
由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.

由此可见a,b,N三个字母在不同的式子中名称可能发生变化.
要点二、对数的运算法则

(1) 正因数的积的对数等于同一底数各个因数的对数的和;

(2) 两个正数的商的对数等于被乘数的对数减去除数的对数;

(3) 正数的幂的对数等于幂的底数的对数乘以幂指数;

要点诠释:
(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.
如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.
(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来
要点3:对数公式
1.对数恒等式:

2.换底公式
同底对数才能运算,底数不同时可考虑进行换底,


当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性:

而且由(2)还可以得到一个重要的结论:

四、对数函数
要点1:对数函数的概念


要点诠释:

(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论.
要点2:对数函数的图象与性质

要点诠释:

下面介绍一种简单记忆方法,供同学们学习时参考.

要点3:底数对对数函数图象的影响
1.底数制约着图象的升降.
如图

要点诠释:
由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.
2.底数变化与图象变化的规律


五、幂函数
要点1:幂函数概念

要点诠释:

要点2:幂函数的图象及性质
1.作出下列函数的图象:


要点诠释:


2.作幂函数图象的步骤如下:
(1)先作出第一象限内的图象;
(2)若幂函数的定义域为(0,+∞)或[0,+∞),作图已完成;
若在(-∞,0)或(-∞,0]上也有意义,则应先判断函数的奇偶性;
如果为偶函数,则根据y轴对称作出第二象限的图象;
如果为奇函数,则根据原点对称作出第三象限的图象.
3.幂函数解析式的确定
(1)借助幂函数的定义,设幂函数或确定函数中相应量的值.
(2)结合幂函数的性质,分析幂函数中指数的特征.

4.幂函数值大小的比较
(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.
(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小.
(3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小.