极坐标系下矢量加减运算

设极坐标中的两个矢量 ( ρ 1 , θ 1 ) (\rho_1,\theta_1) (ρ1,θ1) ( ρ 2 , θ 2 ) (\rho_2,\theta_2) (ρ2,θ2)进行运算,得到 ( ρ , θ ) (\rho,\theta) (ρ,θ)

根据极坐标和直角坐标公式转换
x = ρ ∗ cos ⁡ θ y = ρ ∗ sin ⁡ θ ρ 2 = x 2 + y 2 tan ⁡ θ = y / x ( x ≠ 0 ) x=\rho*\cos\theta \\ y=\rho*\sin\theta \\ \rho^2=x^2+y^2 \\ \tan\theta = y/x \quad (x\neq0) x=ρcosθy=ρsinθρ2=x2+y2tanθ=y/x(x=0)

矢量相加

目标矢量转化成直角坐标
x = ρ 1 cos ⁡ θ 1 + ρ 2 cos ⁡ θ 2 y = ρ 1 sin ⁡ θ 1 + ρ 2 sin ⁡ θ 2 x=\rho_1\cos\theta_1+\rho_2\cos\theta_2 \\ y=\rho_1\sin\theta_1+\rho_2\sin\theta_2 x=ρ1cosθ1+ρ2cosθ2y=ρ1sinθ1+ρ2sinθ2

极径:

ρ = ( ρ 1 cos ⁡ θ 1 + ρ 2 cos ⁡ θ 2 ) 2 + ( ρ 1 sin ⁡ θ 1 + ρ 2 sin ⁡ θ 2 ) 2 = ρ 1 2 ( cos ⁡ 2 θ 1 + sin ⁡ 2 θ 1 ) + ρ 2 2 ( cos ⁡ 2 θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值