设极坐标中的两个矢量 ( ρ 1 , θ 1 ) (\rho_1,\theta_1) (ρ1,θ1)和 ( ρ 2 , θ 2 ) (\rho_2,\theta_2) (ρ2,θ2)进行运算,得到 ( ρ , θ ) (\rho,\theta) (ρ,θ)。
根据极坐标和直角坐标公式转换
x = ρ ∗ cos θ y = ρ ∗ sin θ ρ 2 = x 2 + y 2 tan θ = y / x ( x ≠ 0 ) x=\rho*\cos\theta \\ y=\rho*\sin\theta \\ \rho^2=x^2+y^2 \\ \tan\theta = y/x \quad (x\neq0) x=ρ∗cosθy=ρ∗sinθρ2=x2+y2tanθ=y/x(x=0)
矢量相加
目标矢量转化成直角坐标
x = ρ 1 cos θ 1 + ρ 2 cos θ 2 y = ρ 1 sin θ 1 + ρ 2 sin θ 2 x=\rho_1\cos\theta_1+\rho_2\cos\theta_2 \\ y=\rho_1\sin\theta_1+\rho_2\sin\theta_2 x=ρ1cosθ1+ρ2cosθ2y=ρ1sinθ1+ρ2sinθ2
极径:
ρ = ( ρ 1 cos θ 1 + ρ 2 cos θ 2 ) 2 + ( ρ 1 sin θ 1 + ρ 2 sin θ 2 ) 2 = ρ 1 2 ( cos 2 θ 1 + sin 2 θ 1 ) + ρ 2 2 ( cos 2 θ