邻接矩阵画最小生成树普里姆_离散数学第七章图与树

8ada0d69f079f1ecb1c5c1577f40a2c5.png

图与树

图的基本概念

图及其图解表示

  • 一个图 G 是一个有序二元组(V, E),记作 G = (V, E)
    • V是一个非空的有限集合,V 中的元素称为图 G 的结点或顶点
    • V 称为图 G 的结点集,记作 V(G)
    • E是一个由 V 中元素构成的对偶的集合,E 中的元素称为图 G 的边或弧
    • E 称为图 G 的边集,记作 E(G)
    • V(G),#E(G)分别称为图的结点数和边数.图的结点数也称为图的阶,n 个
    • 结点的图称为 n 阶图.
    • 具有 n 个结点和 m 条边的图称为(n,m)图.
    • 特别,(n,0)图称为零图,(1,0)图称为平凡图.
  • 图 G = (V,E)中
    • 若 E 的元素 e 为 V 中两个元素 u 和 v 的非有序的对偶,则称边 e 为图 G 的无向边
    • 结点 u 和 v 称为无向边 e 的端点
    • 若 E 的元素 e 为 V 中两个元素 u 和 v 的有序的对偶,则称边 e为图 G 的有向边
    • 结点 u 和 v 分别称为有向边 e 的起点(或始点)和终点,也称为有向边的端点
    • 以结点 u 为端点的边称为结点 u 的关联边
    • 显然,对于相异结点 u 和 v,{u,v}和{v,u}是同一条边,而(u,v)和(v,u)是两条不同的边.
  • 图 G = (V,E)中
    • 端点相同的边{u,u}或(u,u)称为结点 u 的自环
    • E 中相同的边{u,v}或(u,v)称为平行边或重复边,并称重复边的条数为该边的重数
    • 含有平行边的图称为多重图.既不含自环又不含平行边的图称为简单图
  • 无向有向
    • 所有边都是无向边的图称为无向图
    • 所有边都是无向边的简单图称为无向简单图
    • 所有边都是有向边的图称为有向图
    • 所有边都是有向边的简单图称为有向简单图
    • 既含无向边又含有向边的图称为混合图.
    • 将有向图的各条有向边略去方向后所得到的无向图称为该有向图的基础图,简称基图.
    • 如果将无向图的各条边任意定一个方向后所得到的有向图称为该无向图的一个定向图
  • 表示方法
    • 集合表示法
    • 图解表示法
    • 矩阵表示法
  • 有权图
    • 如果图 G 的每条边都赋以一个实数作为该边的权,则称图 G 为赋权图或有权图.
    • 有权图可定义为一个有序三元组(V,E, f),其中 f 是一个定义在边集 E 上的函数,通过 f 将权分配给各边.
  • 点边
    • 图中关联于同一条边的两个结点称为是邻接点,关联于同一结点的两条边称为是邻接边.
    • 图中不与其他任何结点相邻接的结点称为是孤立点,不与其他任何边相邻接的边称为是孤立边.
    • 特别,零图是仅由孤立结点组成的图;平凡图是仅由一个孤立结点组成的图.

完全图与补图

  • 在无向简单图中,如果任意两个不同的结点都是邻接的,则称该无向图为无向完全图.n 阶无向完全图记作 Kn.
  • 在有向简单图中,如果任意两个不同的结点之间均有两条方向相反的有向边,则称该有向图为有向完全图.
  • 在有向简单图中,如果任意两个不同的结点之间有且仅有一条有向边,则称该有向图为竞赛图.
  • 例如:无向完全图的一个定向图就是一个竞赛图.
  • 设 G 是一个简单图,由 G 的所有结点和为了使 G 成为完全图所需添加的那些边组成的图,称为 G 的相对于完全图的补图,简称为 G 的补图
  • 显然, G 与 G 的补图 互为补图.

结点的度与握手定理

  • 度的定义
    • 图中关联于结点 v 的边的总数称为该结点的度,记作 deg(v).
    • 在有向图中,以 v 为起点的有向边的条数称为结点 v 的出度,记作 deg+(v)
    • 以 v 为终点的有向边的条数称为结点 v 的入度,记作 deg–(v).
    • 有向图中结点 v 的度为 deg(v) = deg+(v) + deg–(v).
    • 无向图中的自环在其对应结点的度上增加 2,有向图中的自环在其对应结点的度上增加一个入度和一个出度.
  • 握手定理
    • 图中所有结点度数的和为边数的两倍.
    • 图中度为奇数的结点个数为偶数.
  • 正则图
    • 若无向简 简单 单图的所有结点都具有相同的度 d,则称该无向图为 d次正则图.
    • 无向完全图 Kn是 n – 1 次正则图;零图是 0 次正则图.
    • d 次正则图的边数 m = dn/2.

图的连通性

  • 路的定义
    • 图 G 中结点和边的序列v1,e1,v2,e2,v3,…,vl,el,vl+1称为结点 v1 到 vl+1 的一条长为 l 的路.
    • 其中ei(i = 1,2,…,l)以 vi和 vi+1 为端点(有向图中,边 ei为以 vi为起点、以 vi+1为终点的有向边).
      • 若 v1 ≠ vl+1,则称路 v1v2…vlvl+1 为开路.
        • 在开路中,若所有边互不相同,则称该路为简单路
        • 若所有结点互不相同(此时所有边也互不相同),则称该路为基本路或真路
      • 若 v1 = vl+1,则称路 v1v2…vlv1 为回路.
        • 在回路中,若所有边互不相同,则称该路为简单回路
        • 若 v1,v2,…,vl 各不相同(此时所有边也互不相同),则称该回路为基本回路或环
    • 注意
      • (1)有向图的路、开路、回路、简单路、简单回路、真路、环常称为有向路、有向开路、有向回路、有向简单路、有向简单回路、有向真路、有向环.
      • (2)无向图中形如 vivjvi的回路(此时,两条边相同)不能称为环.
      • (3)真路是简单路,简单路不一定是真路.环是简单回路,简单回路不一定是环.
  • 可达
    • 图 G 中,若存在一条结点 u 到 v 的路,则称结点 u 到 v 是可达的,或者结点 v 是 u 的可达结点.
    • 对于无向图,若结点 u 到 v 是可达的,则结点 v 到 u 也是可达的,即结点 u和 v 相互可达,常称为结点 u 和 v 是连接的或连通的.
    • 规定:任何结点到其自身总是可达的.
    • 无向图结点之间的可达关系是图的结点集上的等价关系.
    • 连通图
      • 无向图 G 中,若任意两个结点可达,则称图 G 是连通图或是连通的;否则,称图 G 为非连通图或是非连通的.
      • 仅有一个孤立结点的平凡图是连通图.
      • 有向图 G 中,如果 G 的基图是连通的,则称 G 是弱连通的或连通的
      • 如果对任意的两个结点,至少有一个结点到另一个结点是可达的,则称 G是单向连通的或单侧连通的
      • 如果对任意的两个结点,两者之间是相互可达的,则称 G 是强连通的
      • 对于有向图,强连通的一定是单向连通的,单向连通的一定是弱连通的
      • 无向图G不连通当且仅当G的结点集V可以划分为子集V1和V2,使得 G 的任何边都不以 V1 的一个结点和 V2的一个结点为端点.
  • 短程和距离
    • 图 G 中,若结点 u 可达 v,则称 u 到 v 的路中最短的路为结点 u到 v 的短程
    • 短程的长度称为结点 u 到 v 的距离,用 d(u,v)表示.
    • 若结点 u 到 v 不可达,则 d(u,v) = 无穷.
  • 注意
    • 在无向图中,若结点 u 和 v 是连接的,则 d(u,v) = d(v,u).
    • 在有向图中,结点 u 不一定可达 v,结点 v 也不一定可达 u,即便结点 u 可达 v,v 也可达u,d(u,v)与 d(v,u)也不一定相等.
  • n 阶图 G 中结点 u 到 v(u ≠ v)的短程是一条长度不大于 n – 1 的真路.
  • n 阶图中任一环的长度不大于 n.

图的同构

  • 设G1 = (V1,E1),G2 = (V2,E2)是两个无向图(有向图),若存 在双射函数 h:V1 → V2,使得对任意的 u,v ∈ V1,{u,v} ∈ E1((u,v) ∈ E1) 当且仅当{h(u),h(v)} ∈ E2((h(u),h(v)) ∈ E2),则称 G2 同构于 G1.
  • 注:
    • (1)若图 G2 同构于 G1,则 G1 也同构于 G2,简称 G1 和 G2 同构.
    • (2)图之间的同构关系是等价关系,具有自反性、对称性和传递性.
    • (3)同构的两图除了结点的标记可能不一样外,其它是完全相同的,一图成立的结论对同构于它的图也成立.
  • 若不满足下面的必要条件之一,则可以断定两图不同构:
    • (1)具有相同的结点个数
    • (2)具有相同的边数
    • (3)度数相同的结点数相同.

子图

  • 定义1:设 G1 = (V1,E1)和 G2 = (V2,E2)是两个图
    • (1)若 V2 ⊆ V1 且 E2 ⊆ E1,则称 G2 为 G1 的子图,G1 为 G2 的母图,或称 G1 包含 G2,记作 G2 ⊆ G1
    • (2)若 G2 ⊆ G1 但 G2 ≠ G1(即 V2 ⊂ V1 或 E2 ⊂ E1),则称 G2 是 G1 的真子图, 记作 G2 ⊂ G1
    • (3)若 G2 ⊆ G1 但 V2 = V1,则称 G2 是 G1 的生成子图.
    • (4)如果 V2 ⊆ V1,且 E2 为 E1 中端点均在结点子集 V2 中的所有边的集合,则称 G2 是结点集 V2 的导出子图,简称 G2 是 G1 的导出子图.
    • 任一图 G 都是自身的子图、生成子图和导出子图,但不是真子图
  • 定义2
    • 删边:删去图中某一条边,但仍保留这条边的两个端点.
    • 删边:删去图中某一条边,但仍保留这条边的两个端点.
    • 在图 G 中删去一些边和结点后所得的图称为图 G 的子图.
    • 在图 G 中至少删去一条边或一个结点后所得的图称为图 G 的真子图.
    • 由图 G 删去一些边后所得的子图称为图 G 的生成子图.
    • 保留图 G 的所有结点的子图称为图 G 的生成子图.

分图

  • 设 H 是无向图 G 的子图,如果 H 满足以下条件,则称 H 是 G的分图.
    • (1)H 是连通的
    • (2)对 G 的任意子图 G',若 G' ≠ H,且 H ⊆ G‘ ⊆ G,则 G’ 不是连通的.
  • 注意
    • (1)若 H 是 G 的分图,则 H 首先必须是 G 的连通子图,其次 G 的任何其他子图(含 G),若它真包含 H,则它不是连通的.
    • (2)若图 G 是连通图,则 G 只有一个分图.
    • 无向图 G 中,如果删去结点 u 后图的分图数增加,则称结点 u是 G 的割点
    • 如果删去边 e 后图的分图数增加,则称边 e 是 G 的割边或桥
    • 无向图 G 中边{vi,vj}为割边的充要条件是边{vi,vj}不在 G 的任何环中出现.
  • 弱(单向、强)分图
    • 设 H 是有向图 G 的子图,如果 H 满足以下条件,则称 H 是 G的弱(单向、强)分图.
      • (1)H 是弱(单向、强)连通的
      • (2)对 G 的任意子图 G‘ ,若 G’ ≠ H,且 H ⊆ G‘ ⊆ G,则 G‘ 不是弱(单向、强)连通的.
  • 一个定理
    • 每个竞赛图 G = ( V, E) 都有 一条真生成路,即存在一 条通过 G 的每个结点一次且仅一次的有向路
    • 可用于确定竞赛图中的真生成路
  • 图的运算(并、交、差、补、环和)

图的矩阵表示

关联矩阵

邻接矩阵

连接矩阵

基本概念

  • 不包含环的连通图称为无向树,简称树,
  • 树中度数为 1 的结点常称为树叶.
  • 不包含环的图(即每个分图都是树的图)称为树林.

基本性质

  • 设 T 是一棵树,vi和 vj是 T 中任意两个不同的结点,则 vi和 vj由唯一的一条真路相连接.
    • 若 vi和 vj不相邻接,那么当给 T 添加一条边{vi,vj}后形成的图恰有一个环.
  • 若 T 是一(n,m)树,则 m = n – 1.
  • 具有两个或更多结点的树至少有两片树叶.
  • 给定(n,m)图 T,以下关于树的定义是等价的:
    • (1)无环的连通图.
    • (2)无环且 m = n – 1.
    • (3)连通且 m = n – 1.
    • (4)无环,但增加一条新边,得到一个且仅一个环.
    • (5)连通,但删去任何一条边后不连通.
    • (6)每一对结点之间有且仅有一条真路.

最小生成树

  • 生成树
    • 若连通图 G 的生成子图 T 是一棵树,则称 T 为 G 的生成树,记为 TG.
    • 任何连通图有生成树,且其生成树一般不是唯一的.
  • 构造连通图的生成树的方法
    • 破环法
    • 避环法
    • 用破环法和避环法得到的连通图的生成树一般不唯一
    • 注意
      • (1)若 G 是(n,m)连通图,则其生成树 TG为(n,n – 1)连通图.
      • (2)G 中去掉 m – n + 1 条边可以得到 TG,该数称为 G 的环秩.G 的环秩是为了“弄破”G 的所有环而必须由 G 中删去的边的最小数目.
      • (3)G 的每一条不属于 TG的边称为 TG的弦.共有 m – n + 1 条弦.
      • (4)TG中的边称为 TG的枝.
  • 最小生成树
    • 设 G = (V,E,f)是一连通有权图,T 是 G 的一棵生成树,T 的边 集用 E(T)表示,T 的各边权值之和 W(T) 称为 T 的权.G 的所有生成树中权最小的生成树称为 G 的最小生成树
    • 在构造最小生成树时,若用破环法,则每次去掉环中权最大的边,若用避环法,则每次取出权最小的边.

有向树

基本概念

  • 根树
    • 一个有向图,若其基图是一棵树,则称为有向树.
    • 一棵有向树,若它只有一个结点的入度为 0,而其它所有结点的入度为 1,则称为根树
    • 其中入度为 0 的结点称为树根,出度为 0 的结点称为终点或树叶,出度不为零的结点称为分枝结点(包括树根)或内点(不包括树根).
    • 每棵有向树至少有一个结点.一个孤立点也是一棵有向树.
  • 结点
    • 如果有边与 v0相关联,则这些边都以 v0为起点,称这些边的终点为一级结点.
    • 如果还有边与一级结点相关联,则这些边必以一级结点为起点,而它们的终点称为二级结点.
    • 依次类推
  • 关系
    • 在根树中,若(a,b)是一条边,则称 a 是 b 的父亲,b 是 a 的儿子
    • 同一结点的儿子称为兄弟
    • 若 a 到 b 可达,则称 a 是 b 的祖先,b 是 a 的子孙或后裔
    • 如果还有 a ≠ b,那么称 a 是 b 的一个真祖先,b 是 a 的一个真子孙或真后裔.
  • 子树
    • 设 v 是根树 T 的分枝结点,由结点 v 和它的所有子孙构成的结点集 V1 以及从 v 出发的所有有向路中的边构成的边集 E1 组成的 T 的子图 T1 = (V1,E1)称为 T 的以 v 为根的子树.
    • 以 v 的儿子为根的子树称为 v 的子树.

二元树及其周游

  • m元树
    • 在根树中,若每一结点的出度都小于或等于正整数 m,则称这棵树为 m 元树或 m 叉树.
    • 若每一个结点的出度恰好等于 m 或零,则称这棵树为完全 m 元树.
    • 当 m = 2 时,分别称其为二元树和完全二元树.
    • 若完全二元树的所有树叶结点在同一级别,则称它为满二元树.
  • 有序树
    • 如果在根树中规定了每一级上结点的次序,则称这样的根树为有序树.
    • 在有序树中规定同一级结点的次序是从左到右的.有时也用边的次序代替结点次序.
  • 左右子树
    • 在二元有序树中,每个结点 v 至多有 2 棵子树,分别称为 v 的左子树和右子树.
  • 周游二元树
    • 按照某种次序去访问二元有序树的每一个结点,使得每一个结点恰好被访问一次.
    • 分类
      • 1)先根周游
      • 2)中根周游
      • 3)后根周游

有向树中的一些数量关系

  • 设 T 是一棵完全 m 元树,树叶结点数为 n0,分枝结点数为 t,则(m – 1)t = n0 – 1.
  • 设 T 是一棵二元树,n0 表示树叶结点数,n2 表示出度为 2 的结点数,则 n0 = n2 + 1.
  • 完全二元树有奇数个结点.
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值