python线性回归_机器学习之线性回归(纯python实现)

线性回归是机器学习中最基本的一个算法,大部分算法都是由基本的算法演变而来。本文着重用很简单的语言说一下线性回归。

线性回归

包括一元线性回归和多元线性回归,一元指的是只有一个x和一个y。通过一元对于线性回归有个基本的理解。

一元线性回归就是在数据中找到一条直线,以最小的误差来(Loss)来拟和数据。

708bcd7ae141

image.png

上面提到的误差可以这样表示,假设那条直线如下图:

708bcd7ae141

image.png

理想情况是所有点都落在直线上。退一步,希望所有点离直线的距离最近。简单起见,将距离求平方,误差可以表示为:

708bcd7ae141

image.png

上面的i表示第i个数据。一般情况下对Loss求平均,来当作最终的损失。

最小化误差

找到最能拟合数据的直线,也就是最小化误差。

最小二乘法

上述公式只有m, b未知,因此可以看最一个m, b的二次方程,求Loss的问题就转变成了求极值问题。

这里不做详细说明。

另每个变量的偏导数为0, 求方程组的解。

708bcd7ae141

image.png

708bcd7ae141

image.png

求出m,b即可得到所要的直线。

梯度下降法

没有梯度下降就没有现在的深度学习。

最小二乘法可以一步到位,直接求出m,b。在大部分公式中是无法简单的直接计算的。而梯度下降通过一步一步的迭代,慢慢的去靠近那条最优的直线,因此需要不断的优化。

Loss的函数图像可以类比成一个碗。

708bcd7ae141

image.png

要求的最小值就在碗底,随意给出一点往下走,即沿着下降最快的方向(梯度)往下走,定义每一步移动的步长,移动的次数来逼近最优值。

下面用算法来实现:

初始化:

def init_data():

data = np.loadtxt('data.csv', delimiter=',')

return data

def linear_regression():

learning_rate = 0.01 #步长

initial_b = 0

initial_m = 0

num_iter = 1000 #迭代次数

data = init_data()

[b, m] = optimizer(data, initial_b, initial_m, learning_rate, num_iter)

plot_data(data,b,m)

print(b, m)

return b, m

优化器去做梯度下降:

def optimizer(data, initial_b, initial_m, learning_rate, num_iter):

b = initial_b

m = initial_m

for i in range(num_iter):

b, m = compute_gradient(b, m, data, learning_rate)

# after = computer_error(b, m, data)

if i % 100 == 0:

print(i, computer_error(b, m, data)) # 损失函数,即误差

return [b, m]

每次迭代计算梯度做参数更新:

def compute_gradient(b_cur, m_cur, data, learning_rate):

b_gradient = 0

m_gradient = 0

N = float(len(data))

#

# 偏导数, 梯度

for i in range(0, len(data)):

x = data[i, 0]

y = data[i, 1]

b_gradient += -(2 / N) * (y - ((m_cur * x) + b_cur))

m_gradient += -(2 / N) * x * (y - ((m_cur * x) + b_cur)) #偏导数

new_b = b_cur - (learning_rate * b_gradient)

new_m = m_cur - (learning_rate * m_gradient)

return [new_b, new_m]

Loss值的计算:

def computer_error(b, m, data):

totalError = 0

x = data[:, 0]

y = data[:, 1]

totalError = (y - m * x - b) ** 2

totalError = np.sum(totalError, axis=0)

return totalError / len(data)

执行函数计算结果:

if __name__ == '__main__':

linear_regression()

运算结果如下:

0 3.26543633854

100 1.41872132865

200 1.36529867423

300 1.34376973304

400 1.33509372632

500 1.33159735872

600 1.330188348

700 1.32962052693

800 1.32939169917

900 1.32929948325

1.23930380135 1.86724196887

可以看到,随着迭代次数的增加,Loss函数越来越逼近最小值,而m,b也越来越逼近最优解。

注意:

在上面的方法中,还是通过计算Loss的偏导数来最小化误差。上述方法在梯度已知的情况下,即肯定按照下降最快的方法到达碗底。那么在公式非常难以计算的情况下怎么去求最优解。此时求偏导数可以使用导数的定义,看另一个函数。

def optimizer_two(data, initial_b, initial_m, learning_rate, num_iter):

b = initial_b

m = initial_m

while True:

before = computer_error(b, m, data)

b, m = compute_gradient(b, m, data, learning_rate)

after = computer_error(b, m, data)

if abs(after - before) < 0.0000001: #不断减小精度

break

return [b, m]

def compute_gradient_two(b_cur, m_cur, data, learning_rate):

b_gradient = 0

m_gradient = 0

N = float(len(data))

delta = 0.0000001

for i in range(len(data)):

x = data[i, 0]

y = data[i, 1]

# 利用导数的定义来计算梯度

b_gradient = (error(x, y, b_cur + delta, m_cur) - error(x, y, b_cur - delta, m_cur)) / (2*delta)

m_gradient = (error(x, y, b_cur, m_cur + delta) - error(x, y, b_cur, m_cur - delta)) / (2*delta)

b_gradient = b_gradient / N

m_gradient = m_gradient / N

#

new_b = b_cur - (learning_rate * b_gradient)

new_m = m_cur - (learning_rate * m_gradient)

return [new_b, new_m]

def error(x, y, b, m):

return (y - (m * x) - b) ** 2

上述两种中,迭代次数足够多都可以逼近最优解。

分别求得的最优解为:

1: 1.23930380135 1.86724196887

2: 1.24291450769 1.86676417482

简单比较

sklearn中有相应的方法求线性回归,其直接使用最小二乘法求最优解。简单实现以做个比较。

def scikit_learn():

data = init_data()

y = data[:, 1]

x = data[:, 0]

x = (x.reshape(-1, 1))

linreg = LinearRegression()

linreg.fit(x, y)

print(linreg.coef_)

print(linreg.intercept_)

if __name__ == '__main__':

# linear_regression()

scikit_learn()

此时求的解为:

1.24977978176 1.86585571。

可以说明上述计算结果比较满意,通过后期调整参数,可以达到比较好的效果。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值