学生成绩预测模型_越看头发越多—数据挖掘之分类与预测

本文介绍了机器学习中的分类与预测概念,强调了它们在监督学习中的作用。文章通过实例解释了分类(如预测是否考入名校)与预测(如预测高考分数)的区别,并列举了常见的算法如回归分析、决策树、人工神经网络和贝叶斯网络。此外,还探讨了评估模型质量的方法,包括定量结果的误差指标和定性结果的Kappa统计、准确率等。
摘要由CSDN通过智能技术生成

d41cada1890cd815f97195c6d0eece2b.png

数据挖掘中最典型的四种方法是:

分类与预测、聚类分析、关联规则、时序模式,我试试能不能用大白话讲清楚 概念、常用算法、分类、原理及评价标准。

第一部分是分类与预测

一、概念

分类与预测指的都是根据一些特征来预测问题,是机器学习中最常见的的监督学习算法。即从给定的训练数据集中学习出一个函数,当新的数据到来时,可以根据这个函数预测结果。

要点一:分类和预测的区别在于,分类对应的是离散型结果,预测通常对应连续型结果。

要点二:监督学习的训练集要求包括输入和输出,也可以说是特征和目标。训练集中的目标是由人标注的。即,学习函数时要给出特征和目标。

举个简单的例子

小明的妈妈想预测小明高考时考的怎么样:

如果小明妈妈想预测的是小明的分数,分数是数值型变量,这属于预测;如果小明妈妈想预测的是小明能考入名校/非名校,是否考入名校是离散型变量,这属于分类。

无论是要预测分数还是是否考入名校,小明的妈妈都需要先给一堆已知考的怎么样的历史样本,这些样本的属性是跟考试相关的指标:学生智商,平时成绩,学校排名,学习时长,是否容易紧张等。把这些样本交给机器,让机器学习出一个函数,去预测小明考的怎么样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值