113基于机器学习预测学生考试成绩

本期给大家介绍的是113基于机器学习预测学生考试成绩,效果图如下 :

这是调用训练好的模型来识别的,运行python 03pyqt.py的可视化界面,通过输入学生的课程数和学习总时长来预测最后的分数。

代码下载和视频演示地址:

113基于机器学习预测学生考试成绩_哔哩哔哩_bilibili

代码整体是非常简便的,总共两个py部分和一个数据集在data文件夹下。

Data数据如下,前两列是学生的上课数量和学习时长,后一列是学习分数。

运行01main.py中一共包含了8种机器学习模型,包含线性回归、随机森林、LightGBM、SVM、KNN、决策树、GBM、MLP、XGBoost等。训练结束后会弹出结果柱状图,其中MLP多层感知机(也叫ANN人工神经网络)的效果最佳,验证集上准确率达到99.86%。

最后运行02pyqt.py是个可视化的界面,加载训练好的MLP模型,在界面上输入课程数和学习总时长即可预测最后的分数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值