下三角矩阵的逆矩阵_线性群的初等讨论(5): 上三角矩阵群

93cb7c0caf26f0514acfbd5143596f55.png

上所有n阶可逆上三角矩阵的全体构成
的子群, 记作
, 其中所有主对角线上元素都为1的矩阵构成子群
(也成为单位上三角矩阵群). 我们断言:

. 其中
表示所有n阶可逆对角矩阵的集合.

本节的核心结果是

是幂零类为
的幂零群.
幂零类(nilpotent class)是幂零群降中心列的长度减1. 例如幂零类为1的群是交换群, 幂零类为2的群是亚交换群.

定理5.2的证明方法有多种, 我们采取矩阵计算的方式简要说明. 详细的证明可以参看[1].

为了方便, 用

表示
阶方阵中当
时第
行第
列元素都为
的所有矩阵的集合, 即

显然

, 这样构造了一个序列

事实上上面这个序列正是

的一个正规序列, 并且有

(这里可以用繁琐的矩阵计算说明)

因此是

的一个降中心序列(事实上可以证明它同时也是升中心序列).

即有

是一个幂零群, 其幂零类为
.

是可解群.
这是因为
是幂零群
过幂零群
的扩张. 但要注意它未必是幂零的, 事实上,
就不是幂零的
[2].

不借助矩阵计算的证明参考[3].

反过来有下面这个有意思的结果:

任何一个有限幂零群都同构于某个
的某个子群
[4].

同样我们可以考虑

的自同构.

我们前面提到过

的自同构
[5], 而上三角矩阵群的结果与之相似:

, 则存在
的同态
,
的自同构
,
中的某个元素
, 使得
  • 或者
    或者

上面涉及的部分符号在前一节中已经说明. 注意这里

基于上面这个结果可以也能确定

的自同构(就不再写了, 有兴趣的读者可以自己推下).

上面有关自同构的结果来自[6], 题图为该文摘要.

如有错误, 敬请指出.

参考

  1. ^廖军.一类幂零群的幂零类的分析[D].武汉:湖北大学,2007. http://www.doc88.com/p-2059992577547.html
  2. ^https://math.stackexchange.com/questions/1965811/the-group-of-upper-triangular-matrices-in-gl-n-mathbbr-is-not-nilpotent
  3. ^李文威.代数学方法: 基础架构[M].高等教育出版社:北京,2018:125-126.
  4. ^https://www.zhihu.com/question/386709026
  5. ^https://zhuanlan.zhihu.com/p/127118421
  6. ^Xian Zhang, Chongguang Cao, Yahui Hu.multiplicative group automorphisms of invertible upper triangular matrices over fields[J].Acta Mathematica Scientia,2000,20(4):515-521. https://doi.org/10.1016/S0252-9602(17)30662-8
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值