语音识别维特比解码_3-GMM-HMMs语音识别系统-解码篇

本文主要描述基于GMM-HMMs传统语音识别的解码过程。

Outline:

Viterbi decoding

Cross-word decoding

Beam search

1.Viterbi decoding

语音识别就是一个解码/搜索的过程。即由X=xT1=x1x2,⋯,xt,⋯,xt,找到最有可能的单词序列:

W∗=argmaxWP(X|W)P(W)(1)

同时单词又是由状态序列组成的,所以我们需要对所有可能的状态序列Q=q1q2,⋯,qn求和

W∗=argmaxW⎡⎣∑Q∈QwP(X|Q)P(Q|W)⎤⎦P(W)(2)

其中QW是所有可以产生单词W的状态序列的集合(如下图所示)

搜索或解码在一个state-time Trellis(状态-时间篱笆网络),利用已提供的声学、发音和语言模型提供的公式,对可能的识别单词序列进行打分,最终确定一个分数最大的作为识别结果输出。这里搜索算法可以分两种:time-synchronously和asynchronously;同时根据网络拓扑的方式又可分为:statically和dynamically。下面主要讨论viterbi decoding(前向动态规划)和beam search。

由公式(2)可利用forward-algorithm进行计算。可是这样做并不很高效。所以我们做Viterbi approximation:

W∗=argmaxW[max∀QP(X|Q)P(Q|W)]P(W)(2)

也就是使用最有可能的状态序列来代替所有状态序列之和。单词内部forward或self-loop的转移概率可以由训练好的A矩阵得到,观测概率可由GMM获得。具体计算如下:

V0(i)=1, V0(j)=0(ifj≠i), bt0(j)=0

Vt(j)=maxi=1NVt−1(i)aijbj(xt), btj(j)=argmaxi=1NVt−1(i)aijbj(xt)

P∗=VT(sE)=maxi=1NVT(i)aiE, s∗T=bT(qE)=argmaxi=1NVT(i)aiE

找到最有可能的状态路径后,我们就根据事先保存下来的Backpointer Array向后追踪,获得这条路径的单词序列。

2.Cross-word decoding

当从一个单词跳转到另一个单词时,这部分的转移概率就不是由A矩阵提供的,需通过语言模型计算得到。

3.Beam search

Viterbi decoding执行的是一个精确搜索(Exact Search),然而精确搜索对于LVCSR是不现实的,不可行的,因为大跨度的语言模型极大地增加了搜索空间。所以可以通过在每一步剪枝(pruning)掉low-probability path,也就是Beam Search(束搜索)。语言模型和声学模型都可以被利用来pruning,同时在实际操作中要权衡search errors和decoding speed。因为pruning可能把正确的结果修剪掉,导致错误率上升,虽然解码速度提升了。

最后,语音解码还有很多其他办法,包括现在流行的利用WFST(Weighted Finite State Transducers, 加权有限状态转换器),来进行statically decoding的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值