pytorch forward_PyTorch提取中间层特征?

点击上方“MLNLP”,选择“星标”公众号

重磅干货,第一时间送达

9f77f2c6d64b80341442c875dc61c0a5.png

编辑:忆臻

https://www.zhihu.com/question/68384370

本文仅作为学术分享,如果侵权,会删文处理

机器学习算法与自然语言处理报道

PyTorch提取中间层特征?

作者:涩醉
https://www.zhihu.com/question/68384370/answer/751212803

通过pytorch的hook机制简单实现了一下,只输出conv层的特征图。

import torchfrom torchvision.models import resnet18import torch.nn as nnfrom torchvision import transformsimport matplotlib.pyplot as pltdef viz(module, input):
x = input[0][0]#最多显示4张图 min_num = np.minimum(4, x.size()[0])for i in range(min_num):
plt.subplot(1, 4, i+1)
plt.imshow(x[i])
plt.show()import cv2import numpy as npdef main():
t = transforms.Compose([transforms.ToPILImage(), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = resnet18(pretrained=True).to(device)for name, m in model.named_modules():# if not isinstance(m, torch.nn.ModuleList) and \ # not isinstance(m, torch.nn.Sequential) and \ # type(m) in torch.nn.__dict__.values(): # 这里只对卷积层的feature map进行显示 if isinstance(m, torch.nn.Conv2d):
m.register_forward_pre_hook(viz)
img = cv2.imread('/Users/edgar/Desktop/cat.jpeg')
img = t(img).unsqueeze(0).to(device)with torch.no_grad():
model(img)if __name__ == '__main__':
main()

打印的特征图大概是这个样子,取了第一层以及第四层的特征图。

748220ad85c50c42714657a92a348a89.png
8fe069586b757227b77efc0e4d760165.png

作者:袁坤
https://www.zhihu.com/question/68384370/answer/419741762

建议使用hook,在不改变网络forward函数的基础上提取所需的特征或者梯度,在调用阶段对module使用即可获得所需梯度或者特征。

 inter_feature = {}
inter_gradient = {}def make_hook(name, flag):if flag == 'forward':def hook(m, input, output):
inter_feature[name] = inputreturn hookelif flag == 'backward':def hook(m, input, output):
inter_gradient[name] = outputreturn hookelse:assert Falsem.register_forward_hook(make_hook(name, 'forward'))
m.register_backward_hook(make_hook(name, 'backward'))

在前向计算和反向计算的时候即可达到类似钩子的作用,中间变量已经被放置于inter_feature 和 inter_gradient。

output = model(input)  # achieve intermediate featureloss = criterion(output, target)
loss.backward() # achieve backward intermediate gradients

最后可根据需求是否释放hook。

hook.remove()

作者:罗一成
https://www.zhihu.com/question/68384370/answer/263120790

提取中间特征是指把中间的weights给提出来吗?这样不是直接访问那个矩阵不就好了吗? pytorch在存参数的时候, 其实就是给所有的weights bias之类的起个名字然后存在了一个字典里面. 不然你看看state_dict.keys(), 找到相对应的key拿出来就好了.

然后你说的慎用也是一个很奇怪的问题啊..

就算用modules下面的class, 你存模型的时候因为你的activation function上面本身没有参数, 所以也不会被存进去. 不然你可以试试在Sequential里面把relu换成sigmoid, 你还是可以把之前存的state_dict给load回去.

不能说是慎用functional吧, 我觉得其他的设置是应该分开也存一份的(假设你把这些当做超参的话)

利益相关: 给pytorch提过PR

245cedb4dfbdefdb0e6d60c8f67f1d58.png

推荐阅读:

就最近看的paper谈谈预训练语言模型发展

如何评价Word2Vec作者提出的fastText算法?深度学习是否在文本分类等简单任务上没有优势?

从Word2Vec到Bert,聊聊词向量的前世今生(一)

8db5b6a48ec47336f886eb78e130b78c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值