最近手头上有个夜光遥感数据处理的事,想着就一边处理一边把经验分享上来吧。话不多说,直接开始吧。
DMSP数据可以识别地球表面微弱的近红外辐射,将人类活动与黑暗背景相区分,能够用来表征人类夜间活动。目前DMSP稳定夜间灯光数据主要应用于城市空间结构分析和社会经济指标的分析。DMSP从1992年开始,到2013年为止(共22年),经历了F12\F14\F16\F18四代传感器,共有34期数据。为什么不是22期数据,因为有的年份的数据不同传感器之间有重复,比如F152004-F152007与F162004-f162007,年份相同数据却含两种传感器。因此DMSP稳定夜间灯光数据不具有连续性和直接可比性,需要做一些预处理校正工作。今天介绍如何利用python实现DMSP数据预处理工作中的稳定像元提取。
说明一下,今天的代码有很多不是专门遥感分析的,可能更多的是数据分析的内容,会用到一些numpy、pandas的内容。当然,DMSP遥感数据的读写是与遥感分析相关的,此外将第一次介绍利用gdal实现遥感数据的裁剪。
先介绍一下DMSP稳定亮像元提取和不同传感器相互校正的方法。对于稳定亮像元来说,可以这么理解,假设城市的发展不存在倒退的现象,随着年份的增长,稳定亮像元后一年份应该大于前一年份,且认为前一年份出现的稳定亮像元后一年份仍然存在(以黑龙江鸡西市为例,原因很多研究文献中提取及,不赘述)。
首先我们要做的就是数据的读写。在数据读写之前,我试了两种办法获取鸡西市的DMSP数据,一种是利用GEE下载(以后我会分享一些GEE的内容),另一种就是把34期全球的数据下载下来,然后利用鸡西的行政区划裁剪出来。这就引出了今天要介绍重要内容,利用gdal裁剪遥感数据