算力和硬件的关系_研究人员研制出基于忆阻器阵列芯片卷积网络的完整硬件实现,大幅提升算力同时功耗更小、成本更低...

与非网 3 月 1 日讯,近日,清华大学微电子所、未来

芯片

技术高精尖创新中心钱鹤、吴华强团队与合作者联合在英国《自然》杂志(Nature)在线发表论文表示,研制出基于

忆阻器

阵列芯片卷积网络的完整硬件实现。

该存算一体系统在处理

卷积神经网络

(

CNN

)时能效比前沿的图形处理器芯片(GPU)高两个数量级,可以说在一定程度上突破了“冯诺依曼瓶颈”的限制:大幅提升算力的同时,实现了更小的功耗和更低的硬件成本。

忆阻器是表示磁通与电荷关系的电路器件。忆阻具有电阻的量纲,但和电阻不同的是,忆阻的阻值是由流经它的电荷确定。因此,通过测定忆阻的阻值,便可知道流经它的电荷量,从而有记忆电荷的作用。最早提出忆阻器概念的人,是华裔的科学家蔡少棠,当时任教于美国的加州大学伯克利分校。

由于忆阻器尺寸小、能耗低,所以能很好地储存和处理信息。一个忆阻器的工作量,相当于一枚 CPU 芯片中十几个晶体管共同产生的效用。

据清华大学新闻页面报道,当前国际上的忆阻器研究还停留在简单网络结构的验证,或者基于少量器件数据进行的仿真。基于忆阻器阵列的完整硬件实现仍然有很多挑战。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值