与非网 3 月 1 日讯,近日,清华大学微电子所、未来
芯片
技术高精尖创新中心钱鹤、吴华强团队与合作者联合在英国《自然》杂志(Nature)在线发表论文表示,研制出基于
忆阻器
阵列芯片卷积网络的完整硬件实现。
该存算一体系统在处理
卷积神经网络
(
CNN
)时能效比前沿的图形处理器芯片(GPU)高两个数量级,可以说在一定程度上突破了“冯诺依曼瓶颈”的限制:大幅提升算力的同时,实现了更小的功耗和更低的硬件成本。
忆阻器是表示磁通与电荷关系的电路器件。忆阻具有电阻的量纲,但和电阻不同的是,忆阻的阻值是由流经它的电荷确定。因此,通过测定忆阻的阻值,便可知道流经它的电荷量,从而有记忆电荷的作用。最早提出忆阻器概念的人,是华裔的科学家蔡少棠,当时任教于美国的加州大学伯克利分校。
由于忆阻器尺寸小、能耗低,所以能很好地储存和处理信息。一个忆阻器的工作量,相当于一枚 CPU 芯片中十几个晶体管共同产生的效用。
据清华大学新闻页面报道,当前国际上的忆阻器研究还停留在简单网络结构的验证,或者基于少量器件数据进行的仿真。基于忆阻器阵列的完整硬件实现仍然有很多挑战。