任谁都躲不过找工作的问题,好希望能多准备一些时间,奈何时间不等人,每天刷几道题,并且记录下来吧:
一、请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
def replaceSpace(s):
# write code here
num_space = 0
new_s = ''
for i in range(len(s)):
if i == ' ':
num_space += 1
for i in range(len(s)):
if s[i] == ' ':
new_s = new_s + '%20'
else:
new_s = new_s + s[i]
return new_s
a = ' ii oob '
replaceSpace(a)
开辟了另外的空间,空间复杂度有点高,但看起来思路很简单。还有一种做法是首先确定整个字符串的长度,然后不断的插入,并将后边的字符串向后推。
二、 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList。
class ListNode:
def __init__(self, val=None):
self.val = val
self.next = None
def printListFromTailToHead(listNode):
result = []
head = listNode
while head:
result.insert(0,head.val)
head = head.next
return result
e1 = ListNode(1)
e2 = ListNode(2)
e3 = ListNode(3)
e4 = ListNode(5)
e1.next = e2
e2.next = e3
e3.next = e4
print(e1.next)
printListFromTailToHead(e1)
首先,我们的定义链表节点类,节点内只有两个信息,一个是该节点的值,另外一个是节点的下一个节点。
开辟一个新空间就一个列表,在这个列表的列表头 index = 0 处,不断的插入链表的值即可
三、 重建二叉树:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
利用前序遍历和中序遍历之间的关系,使用递归的方式求解:
# 重建二叉树
# 利用 二叉树的前序遍历 中序遍历 重建二叉树
# 前序遍历的顺序为先根节点再左再右 中序遍历的顺序为先左节点再中再右
# -*- coding:utf-8 -*-
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def reConstructBinaryTree(self, pre, tin):
# write code here
if len(pre) == 0:
return None
elif len(pre) == 1:
return TreeNode(pre[0])
else:
root = TreeNode(pre[0])
position = tin.index(pre[0])
root.left = self.reConstructBinaryTree(pre[1:position+1], tin[:position])
root.right = self.reConstructBinaryTree(pre[position+1:], tin[position+1:])
return root
四、 用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。
# 用两个栈 实现一个队列
# 栈的特性是先入后出 队列的特性是先入先出
# 所以需要用两个栈 其中一个负责压栈设为栈1 另外一个负责弹栈设为栈2
# 当压栈时,将元素压入栈1, 当弹栈时 如果栈2为空,就将栈1的内容弹入栈2 , 此时队列的头在栈顶, 将其弹出即可
# 当栈2不为空时,则先弹出栈2的内容,直到其为空
# -*- coding:utf-8 -*-
class Solution:
def __init__(self):
self.stack1 = []
self.stack2 = []
def push(self, node):
# write code here
self.stack1.append(node)
def pop(self):
# return xx
if len(self.stack2) == 0:
while self.stack1:
self.stack2.append(self.stack1.pop())
return self.stack2.pop()
五、 旋转数组
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
为了降低时间复杂度,这里一定要使用旋转数组的性质,旋转数组有两个分离的数组构成,而且后边的小于、等于前边的。所以这里的方法就是,二分法,不断将数组二分,如果中位点大于左边的点,就将中位点设为左,否则设为右,递归的将问题分解成小问题,边界条件是 right - left ==1。
# 找旋转数组 最小值
# 为了降低时间复杂度 需要利用旋转数组的性质
def minNumberInRotateArray(rotateArray):
# write code here
if len(rotateArray) == 0:
return 0
left = 0
mid = 0
right = len(rotateArray) - 1
while rotateArray[left] >= rotateArray[right]:
if (right-left) == 1:
mid = right
break
if rotateArray[left] == rotateArray[mid] and rotateArray[mid] == rotateArray[right]:
return minInside(rotateArray,left ,right)
if rotateArray[left] >= rotateArray[right]:
mid = (left + right) // 2
if rotateArray[mid] >= rotateArray[left]:
left = mid
else:
right = mid
return rotateArray[mid]
def minInside(array,left,right):
result = array[left]
for i in range(left,right+1):
if array[i] < result:
result = array[i]
return result
a = [1,0,1,1,1]
b = minNumberInRotateArray(a)
print(b)