SSD同样是经典论文,后续很多论文以此为基础,所以搞懂流程比较重要,中间如果 有写的不对、有问题或者有看不懂的地方,还望指正。如果有了新的理解,我会持续更新。
作为经典论文,SSD算法也同样产生了很多后续工作比如 DSSD、RefineDet等等,而且由于有速度优势,工程中使用SSD和YOLO的可能性会更大。
一、网络结构:
上图是SSD和YOLO的网络结构,通过对比可以发现,SSD的优点就是它生成的 default box 是多尺度的,这是因为SSD生成default box 的 feature map 不仅仅是CNN输出的最后一层,还有利用比较浅层的feature map 生成的default box。所以SSD对于小目标的检测一定会优于YOLO v1(小目标经过高层卷积后特征几乎都消失了)。同时,又因为SSD生成的多尺度default box一定有更高概率找到更加贴近于 Ground Truth 的候选框,所以模型的稳定性是肯定比YOLO强的(YOLO的bounding box很少,只有98个,如果距离GT比较远,那么修正 bounding box 的线性回归就不成立,训练时模型可能会跑飞)。但是SSD的候选框数量是三种经典网络中最多的,有8732个,所以训练时应该会比较慢。
二、算法流程:
首先来看一下SSD的基本