深度学习 -- SSD 算法流程详解

      SSD同样是经典论文,后续很多论文以此为基础,所以搞懂流程比较重要,中间如果 有写的不对、有问题或者有看不懂的地方,还望指正。如果有了新的理解,我会持续更新。

      作为经典论文,SSD算法也同样产生了很多后续工作比如 DSSD、RefineDet等等,而且由于有速度优势,工程中使用SSD和YOLO的可能性会更大。

      一、网络结构:

      上图是SSD和YOLO的网络结构,通过对比可以发现,SSD的优点就是它生成的 default box 是多尺度的,这是因为SSD生成default box 的 feature map 不仅仅是CNN输出的最后一层,还有利用比较浅层的feature map 生成的default box。所以SSD对于小目标的检测一定会优于YOLO v1(小目标经过高层卷积后特征几乎都消失了)。同时,又因为SSD生成的多尺度default box一定有更高概率找到更加贴近于 Ground Truth 的候选框,所以模型的稳定性是肯定比YOLO强的(YOLO的bounding box很少,只有98个,如果距离GT比较远,那么修正 bounding box 的线性回归就不成立,训练时模型可能会跑飞)。但是SSD的候选框数量是三种经典网络中最多的,有8732个,所以训练时应该会比较慢。

      二、算法流程:

      首先来看一下SSD的基本

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值