梯度的旋度为零证明_散度、旋度与拉普拉斯算子

散度、旋度与对应的定理

散度对应高斯公式,又称散度定理

旋度对应格林公式、乃至其三维形式的斯托克斯公式,又称旋度定理

散度、旋度的正式定义

对于一矢量函数(矢量场)

散度

,是标量。

旋度

,是向量。

散度的几何意义

散度表示当

有微小增加时,
增加量的总和。散度在各个方向是一样的,不随坐标系旋转而改变。
下面是对散度旋转不变的证明。
以二维空间为例,假设有散度
,证明当坐标系
绕原点逆时针旋转
之后,仍有
。当坐标系旋转后,对于坐标有对应关系
,亦即
。此时对于
。对于
,又有
。其中
,得到
,代入原式得
。同理,对于
。加总
并应用
,有

既然散度对旋转不变,那么散度应该指的是二维平面内某个微小圆周内的(三维空间内则是某个微小球面内的)性质。而且,既然散度在任何旋转下都不变,那么必定可以找到某个角度,使得散度的值刚好等于矢量的微小变化量在某个轴上的分量,此时矢量的微小变化量

与这个轴的方向平行。这表明,散度表示的是
的长度,也就是某个速度矢量的增加量。

旋度的几何意义

既然散度描绘的是速度矢量的增加量,旋度描绘的就是速度矢量方向的变化情况,所以它是矢量,有三个分量。

闭合曲面、曲线上的散度、旋度

散度定理说明,矢量场穿过曲面的通量,等于散度在曲面围起来的体积上的积分。

旋度定理说明,矢量场在曲线上的旋量,等于旋度在曲线围起来的曲面上的积分。

曲面、曲线积分与路径无关的条件

曲线积分与路径无关,相当于沿任意闭曲线的曲线积分为零。这样的矢量场被称为保守场,可以表示为某个标量势函数的全微分。用公式表示为

,也就是
散度为零。

曲面积分与路径无关,相当于在任意闭曲面的曲面积分为零。这样的矢量场被称为螺线矢量场,可以表示为某个矢量势函数的全微分。用公式表示为

,亦即
,也就是
旋度为零。

对散度和旋度统一的尝试

假设有一标量场

,则其梯度为

同理,对于一向量场

它的梯度为

此时,对于右方的单位向量乘法有两种处理方式。

第一种方式,采用点乘,体现它的数量上的性质,得到散度

第二种方式,采用叉乘,体现它的旋转上的性质,得到旋度

拉普拉斯算子

拉普拉斯算子用公式表示为

。它可以看作是对于某个标量函数
的梯度
(其中
)求散度。作为散度,它表示梯度场的速度矢量的单位增加值,并且在点
周围的一个球面内都相同。所以拉普拉斯算子表示以某个点为中心的球面上的某个标量函数的平均值,在球面半径增大时增大的速率。
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页