梯度的旋度为零证明_旋度 斯托克斯定理

(建议阅读原文)

预备知识 圆周运动的速度, 散度, 线积分, 流密度, 通量
   我们在矢量场中取一个闭合回路

并规定一个正方向, 并定义该回路的
环流量为矢量场在回路上的线积分

下面我们来定义 旋度, 旋度是一个矢量, 记为
. 在空间某点
处选取一个小面元
(模长为面元的面积, 方向为面元的一个法向量), 令面元边界构成的回路为
, 正方向由右手定则 判断. 要定义其
方向的分量, 就取
同向&#x
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据斯托克斯定理,对于一个向量场$\vec{F}$,其旋度$\nabla \times \vec{F}$的面积分等于该向量场在该曲面边界上的环量积分。因此,如果我们证明了该向量场在任何封闭曲面上的环量积分都等于,那么就可以证明该向量场的旋度恒等于。 假设$\vec{F}$是一个向量场,$S$是一个任意的封闭曲面,$C$是该曲面的边界曲线。根据斯托克斯定理,有: $$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S}$$ 由于$S$是一个封闭曲面,因此可以将其分成若干个小曲面,每个小曲面都有一个相应的边界曲线。对于每个小曲面,我们可以将其上的向量场$\vec{F}$分成两个部分:一个与该小曲面平行,一个与该小曲面垂直。由于与该小曲面平行的部分在环量积分中不会产生贡献,因此我们只需要考虑与该小曲面垂直的部分。 对于每个小曲面,我们可以将其上的向量场$\vec{F}$表示为$\vec{F} = \nabla \phi$的形式,其中$\phi$是一个标量场。这是因为,对于任何向量场$\vec{F}$,都可以找到一个标量场$\phi$,使得$\vec{F} = \nabla \phi$。因此,我们可以将上式中的$\vec{F}$替换为$\nabla \phi$,得到: $$\oint_C \nabla \phi \cdot d\vec{r} = \iint_S (\nabla \times \nabla \phi) \cdot d\vec{S}$$ 由于旋度算子$\nabla \times \nabla \phi$等于,因此上式右侧为。因此,我们得到: $$\oint_C \nabla \phi \cdot d\vec{r} = 0$$ 由于$C$是任意的曲线,因此上式对于任何封闭曲面$S$都成立。因此,我们证明了任何向量场梯度旋度恒等于

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值