如何检测图像中的条纹_自监督式特征增强在大图像目标检测中的应用

本文探讨了在深度学习目标检测中,图像大小对性能的影响,提出SFANet网络,通过自监督学习增强特征,尤其适用于大图像条纹检测。实验表明,SFANet在MVD、Cityscapes和COCO数据集上取得良好效果。
摘要由CSDN通过智能技术生成

Manuscript received July 4, 2019; revised February 15, 2020 and April 7, 2020; accepted April 29, 2020. Date of publication May 14, 2020; date of current version July 6, 2020. This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC0807500, in part by the National Natural Science Foundation of China under Grant 61832016, Grant 61672520, and Grant 61720106006, and in part by the CASIA-LLVision Joint Laboratory.

1、 简介与概述

在深度卷积神经网络(CNNs)的帮助下,目标检测的性能得到了显著提高。在这些测试中,典型的图像大小为 480×640。然而,在某些应用领域,输入图像的分辨率非常高。由于限制,高分辨率图像不能作为目标检测框架的输入。为了处理上述问题,我们将输入图像降采样到小尺度。我们将高分辨率图像下采样到不同的比例,然后将图像从最小增加到对应的不同比例。通过下采样获得的图像称为高分辨率图像,而通过上采样获得的图像称为低分辨率图像。然后,我们使用上述每组图像训练深度神经网络。图 1 中的虚线显示了将高分辨率缩小图像作为输入时检测平均精度(AP)与图像大小变化的比较。实线显示了使用这些低分辨率图像作为输入的检测结果。与虚线显示的结果一致,大尺寸输入优于小尺寸或中等尺寸输入。从这些比较中,我们有以下观察结果:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值