
Cholesky 应该怎么念,o(╯□╰)o,我感觉比较像‘瞅乐死骑’,毕竟这是 名字,哈哈哈哈
这个矩阵非常重要,之前在最小二乘法也见过它,如果:
无解,也就是
那么我们会想要最小化:
也就是:
这个 Error 函数对
也就是需要解:
(1)详细推导过程可以参见:least_squares_SP
(1)式也就是:
(1)式 一定可以推出 (2) 式么?
对称
对称,首先
它的转置等于自身,所以对称。
正定矩阵
先看定义:
这里的 A、M 我们暂时只考虑它是实数矩阵内,如果A是满秩的方阵,明显
实际上看看到另外一些地方,对于正定矩阵,它给的定义就是:
给定一个大小为 n x n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 x ,有恒成立,则矩阵 A 是一个正定矩阵。
对于实半正定矩阵,我们可以有Cholesky分解。
Cholesky分解
当 A 是一个SPD (real Symmetric positive definite matrix)的时候,注意这里的A 不是上面的 A(只是我用了同一个字母),就可以分解成 lower triangle 矩阵 L 和它的转置也就是 upper triangle

可以用归纳法证明这个分解是一定存在并且是唯一的,可以参见:
How to prove the existence and uniqueness of Cholesky decomposition?
之前的高斯消元法中我们写过:
当A正定的时候:
在实际中,如果矩阵是正定的,使用 Cholesky分解 会比 LU分解 更加高效,更加数值稳定。
计算
计算的话,我们可以用 scipy.linalg.cholesky
import numpy as np
from scipy import linalg
a = np.array([[4, 12, -16],
[12, 37, -43],
[-16, -43, 98]])
L = linalg.cholesky(a, lower=True) # 默认计算 upper, 所以指定 lower = True
# array([[ 2., 0., 0.],
# [ 6., 1., 0.],
# [-8., 5., 3.]])
np.allclose(np.dot(L, L.T) , a) # 验证计算