1. 中国人民大学附属中学;2. 南开大学物理学院
2019 年亚洲物理奥林匹克竞赛(APho)第3 题考察了翻转陀螺。考生们需要利用刚体定点转动的知识对翻转陀螺进行建模,面临以下两个难点。首先,考生们没有系统的学过刚体定点转动的知识,对诸如转动惯量张量、欧拉角等基本概念不了解。其次,求解过程当中涉及地面参考系、质心参考系和转动参考系之间的变换。学生们需要区分同一个物理量,例如角速度,在不同参考系当中的表达形式以及它的运动方程。为了帮助同学们备考,我们将首先简单介绍刚体定点转动的相关知识,以帮助构建基本的理论体系。然后给出详细解答。最后介绍进一步的参考资料。
刚体定点转动
如图1 所示,翻转陀螺由一个球缺和垂直于球缺底面的柄组成。球缺的中心为O点,整个陀螺的重心位于C点。陀螺的关于柄旋转对称,O、C两点都在柄的延长线上。当陀螺静止时,重心C位于O点的下方。当陀螺绕着柄自转时,其重心会不断升高,进而发生翻转。直到最后柄朝下,陀螺绕着柄和地面的接触点转动。陀螺重心C 在O 点上方。该现象极大的挑战了人们在日常生活中形成的物理直觉。按照生活经验,物体的重心越低就越稳定。那么陀螺稳定转动时,重心C应当在O点的下方。定量的解释需要分析力学等理论物理知识,我们会在后面的章节详细讨论。这里我们从普通物理出发,给出陀螺翻转的定性解释。
图1 翻转陀螺的(1)俯视图和(2)正视图
先来看陀螺的受力分析。陀螺一共受三个力:重力、支持力和滑动摩擦力。重力阻碍陀螺翻转。支持力不做功,不改变陀螺的重力势能和重心高度。按照力学知识,摩擦力做功会使得系统机械能减少,似乎也不会使得重心升高。但仔细分析我们会发现,滑动摩擦力在减少系统总机械能的同时,还会将转动动能转化为重力势能。
下面我们分别从角动量和能量的角度讨论滑动摩擦力的作用。先从角动量角度来看。如图1(b)建立123 坐标系,保证坐标轴2 垂直于纸面向里,坐标轴3 沿着柄(对称轴)方向。假设陀螺一开始质心静止,且绕3轴旋转,角动量沿3轴的正方向。此时接触点A的速度垂直于纸面向里,滑动摩擦力垂直于纸面向外。以重心为支点计算滑动摩擦力的力矩,如果角动量的的方向和力矩的方向满足如图1(c)所示的关系,陀螺的角动量会绕2 轴顺时针进动。适当的条件下,陀螺会翻转。从能量角度来看,陀螺开始进动后,摩擦力的力矩将一部分3 轴转动的动能转化为陀螺绕2 轴顺时针进动的动能。随着进动,陀螺的重心升高,进动的动能进一步转化为重力势能。
下面我们进一步讨论翻转陀螺的定量描述。
A 部分:理论基础
A1. 转动惯量
刚体可看作是质点系,其角动量和能可以写为如下形式
假定刚体中任意两个质点间的距离不随的运动而发生变化,则质心参考系中第i 个质点的速度可以写成 , 为角速度矢量。代入(1)式可以得到
公式(2)的证明见附录。其中
称为转动惯量张量,它和粒子的坐标 有关。在质心系内研究转动时,随时间变化,转动惯量I也随时间变化,角动量定理的形式很复杂。于是我们选择随刚体一起转动的参考系(以下简称转动参考系)。在该参考系中,各粒子的坐标都不变,转动惯量I 也不随时间变化。如果坐标轴和刚体对称轴重合、且刚体的质量均匀分布,则非对角元I12= I21、I13= I31、I23= I32恒等于零。将对角元重新记为I11= I1、I22= I2、I33= I3,式(2)可以简化为
式(4)中ê1、ê2和ê3代表沿着转动参考系坐标轴方向的单位矢量,它们跟随参考系一起转动。可以证明。将对时间求导后得到
转动参考系中转动惯量张量Ij不变,故
将
和
代入式(5),得到
结合式(6)和角动量定理,可以得到欧拉方程
欧拉方程可以描述任意刚体的转动,但需要注意如下两点。首先,M1、M2、M3代表转动参考系中力矩的分量。需要先在地面参考系当中求出力矩,再利用坐标变换求M1、M2、M3的数值。其次,ω1、ω2、ω3代表了转动参考系中角速度的3 个分量。利用欧拉方程求ω1、ω2、ω3之后,还需要变换回地面参考系。
A2. 欧拉角
这一节里我们讨论转动参考系和质心参考系间的关系,它们之间可以通过一个线性变换相联系。
图2 欧拉角
图2 中xyz 代表质心参考系,x' y' z'代表t 时刻的转动参考系。通过如下变换可以将xyz 参考系变换到x' y' z' 参考系:先绕z 轴转动α角,此时xyz 参考系的x 轴转动到了N轴的位置;再绕N轴转动β角,此时xyz 参考系的z 轴转到了z'轴方向;最后绕z'轴转γ角,xyz 参考系的x 轴转到了x'轴位置,y 轴转到了y' 轴位置。转动后xyz 参考系和x' y' z'参考系重合。α、β和γ统称欧拉角。因为是x' y' z'是转动参考系,所以欧拉角随时间变化,描述x' y' z' 参考系的转动状态。α̇、β̇和γ̇代表刚体绕着z 轴、N轴和z'轴转动的角速度。以[ê01 ê02 ê03]代表xyz 轴方向上的单位矢量,[ê1 ê2 ê3]代表x' y' z'轴方向上的单位矢量,N̂ 代表沿图1 中N轴的单位矢量。总角速度可以写为
可以证明(见附录),质心参考系中角速度的分量表达式为
转动参考系中角速度的分量表达式为
欧拉角有三个作用。第一,利用欧拉方程(7)解出角速度在转动参考系当中的3 个分量ω1、ω2和ω3,再结合式(10)求出欧拉角时间的函数关系,最后代入式(9)求出角速度在质心参考系中的分量ω10、ω20和ω30。第二,我们需要利用欧拉角将力矩变换到转动参考系中,得到分量M1、M2和M3。第三,在计算刚体的动能时,应当将表达式(10)代入式(4),得到
综上,求解欧拉方程(7)之后,结合欧拉角可以求出角速度、角动量和动能随时间变化的关系。
B 部分:赛题详解
B1
考虑如下三个参考系:惯性系XYZ、中间参考系xyz 和陀螺参考系123。惯性系XYZ 即质心参考系。它的的原点在陀螺的质心,Z 轴竖直向上,X、Y轴在水平平面内。
中间参考系xyz 是一个旋转参考系,它的原点在质心,ẑ轴静止且指向正上方,x̂、ŷ轴绕ẑ轴旋转。旋转过程中,陀螺的对称轴始终在xz 平面内。图3 分别是侧视图和俯视图。如图3(a)所示,俯视图中陀螺的对称轴和x轴对齐。
图3 翻转陀螺的(a)从XYZ系到xyz系的变换(b)从xyz系到123 系的变换
按照定义,中间参考系xyz 描述了陀螺对称轴绕竖直方向的旋转的角位置。假设旋转角为ϕ ,如图3(a)所示。以x̂、ŷ和ẑ代表沿着xyz 参考系坐标轴的单位矢量,X̂ 、Ŷ 和Ẑ 代表沿着XYZ参考系坐标轴的单位矢量。这些单位矢量间的关系满足如下变换
陀螺参考系123 是固定在旋转陀螺上的旋转参考系,其坐标轴和陀螺的对称轴重合。将xyz 参考系绕y 轴旋转θ角就可以得到123 参考系,如图3(b)所示。由此可知,陀螺参考系123 描述陀螺对称轴和竖直方向的夹角。以、 和代表沿着123参考系坐标轴的单位矢量,根据图3(b)有
综上所述,ϕ 和θ 角描述陀螺对称轴在空间中的指向。
此外,陀螺还会绕着其对称轴旋转。以ψ 角描述陀螺绕其对称轴自旋。对应的角速度为ψ̇ 。这里提到的ϕ 、θ 和ψ 本质上就是欧拉角。对比图3和图4,图3(a)中的XYZ系对应图4 中的质心参考系XYZ;xyz 参考系对应x1y1z1参考系,满足ϕ = α 。图3(b)中的123 参考系对应图4 中的x2y2z2参考系,满足θ = β 。因为轴是对称轴,所以在123 系中计算的转动惯量不随陀螺的转动而变化。ψ 角是刚体绕陀螺的对称轴的转动角,等价于图4 中的γ角。在123 参考系中观察,刚体以角速度ψ̇ ( γ̇)转动。最后,x3y3z3参考系是随着陀螺一起转动的参考系,在该参考系中观察,陀螺静止。
xyz 系和123 系都是转动参考系,需要讨论x̂、ŷ、ẑ和、 、随时间的变化规律。参考式(5)可以证明,对于任意矢量都有
其中代表矢量在XYZ 系中的变化率,͂代表矢量在转动参考系中的变化率,代表参考系转动导致的矢量的变化( 是参考系的转动角速度)。x̂、ŷ、ẑ和、 、都是转动参考系中的单位矢量,满足 。随陀螺一起转动,式(14)中的 是刚体转动的角速度。单位矢量x̂和ŷ随着xyz 系一起转动, 应当取xyz 系转动角速度。代入式(15)得到
评述:本题中,有三个坐标系,分别标记为xyz坐标系、XYZ坐标系和123 坐标系,它们之间的变化关系如上述各式。在解题时要弄清楚,避免搞混。
B2
受力分析如图5 所示。
图5 陀螺的受力分析
其中包括支持力N和重力mg和摩擦力Ff。陀螺的质心可能会在竖直方向上加速,所以地面的支持力N 和重力mg 并不平衡。Ff是滑动摩擦力,大小为μkN ,与接触点A的速度vA 方向相反。陀螺所受的合力为
B3
除了重力,其他的力都作用在接触点。如图5所示,O为几何中心,C为质心,接触点为A。在参考系xyz 和参考系123 中,接触点A相对质心的位置矢量分别表示为
其中R 为陀螺半径,α描述陀螺质心和几何中心的偏离程度。式(17)的计算利用了式(13)。
以陀螺的质心为支点计算总力矩 。将式(17)代入,考虑到摩擦力Ff有x 和y两个方向的分量,可以求出
图6 翻转陀螺上的坐标系与接触点的相对位置矢量
根据图6,有ẑ× = sin θŷ。再利用式(13)将分解为= sin θx̂+ cos θẑ,代入式(18)可得
评述:受力分析是物理的基本功,即使对于这样看似复杂的题目,也是如此。
B4
以地面为XY 平面建立地面参考系。在地面参考系中,陀螺质心的位置矢量为 。接触点相对于质心的位置矢量为 ,则地面参考系中接触点A的位置矢量为 。接触点的速度 可以分解为质心的速度 和接触点相对于质心的速度 。我们在图4 所示的x3y3z3参考系中讨论 。根据式(15)有
因为x3y3z3参考系随陀螺一起转动,在该参考系中接触点相对静止,所以。则接触点速度为
其中为x3y3z3参考系的转动角速度,也是陀螺的转动角速度。再利用、和式(15) 可得:
因为接触点在地面上,所以。单位矢量ẑ始终竖直向上,所以有。对zA求导
联立式(22)和(23),即可证明 。
评述:因为陀螺和地面不分离,所以接触点在竖直方向上的速度始终为零, 是很自然的结果。
不能对 直接求导计算接触点相对于质心的速度 。这是因为代表从质心指向陀螺上和地面接触的那个点的矢量。上一时刻和下一时刻,陀螺上和地面接触的点不是同一个点, 直接求导没有物理意义。 代表陀螺上某个确定的点相对质心的速度,与 的导数没有必然关系根据式(22),,其中代表陀螺质心的竖直速度, 代表陀螺转动角速度,3̂代表陀螺对称轴的方向。这意味着求出陀螺的转动情况后,陀螺质心的竖直速度就确定了。对时间求导后得到陀螺质心的竖直加速度,代入质心的牛顿运动方程可以算出支持力 和滑动摩擦力 的大小μkN ,进而求出陀螺受到的力矩。因为 是滑动摩擦力,此时接触点在地面上滑动。此时质心速度的水平分量和是独立变量,需要将 代入牛顿第二定律求解质心的运动。
若陀螺做纯滚动,则接触点和地面相对静止,且为静摩擦。于是有 、 。这意味着求出陀螺的转动情况后,陀螺质心的水平速度 和 就确定了。对和求导,求出质心的水平加速度,代入牛顿运动方程,就能求出地面的静摩擦 。综上所述,陀螺的转动情况直接决定了陀螺质心的平动。
B5
与式(8)类似,陀螺的转动包含绕ẑ、和三个轴的分转动,总角速度是这三个方向上转动角速度的矢量和
利用式(13),将角速度变换到xyz 参考系或者123参考系,得到
评述:根据图5,式(24)分别是角速度在xyz 参考系(x1y1z1参考系)和123 参考系(x2y2z2参考系)中的分量表达式,而式(9)和(10)分别是角度速度在XYZ系(质心平动参考系)和x3y3z3(随陀螺一起转动的参考系)中的表达式。原则上来说,陀螺的转动和参考系的选择无关。但为了保证转动惯量不会随着陀螺的转动而变化,我们必须在123 参考系(x2y2z2参考系)和x3y3z3参考系中研究陀螺的转动。
B6
式(4)给出陀螺的总动能,考虑重力势能之后,陀螺的总机械能为
利用式(21)、(24)和,可以把质心的速度质心速度 表示为接触点速度 和角速度 的函数
利用ẑ× = sin θŷ和式(13),将和ẑ× 化简,得到
代入质心平动的动能表达式 ,得到
为保证转动惯量不随时间变化,我们在123 系计算陀螺的转动动能。因为轴是陀螺的对称轴,所以陀螺的转动惯量为
将123 系中角速度的分量表达式,即(25)式的第二式代入,
得到
在式(11)中令I1= I2也能得到相同的结果。
评述:以上几问,涉及了力矩、角速度、运动方程、张量等概念,在计算中,用到了矢量计算,对数学基本功提出了很高的要求。
B7
根据角动量定理 和式(19),有
B8
先讨论总能量。陀螺受重力-mgẑ、支持力Nẑ和滑动摩擦力 。重力做功不改变机械能,支持力不做功。滑动摩擦力摩擦力与速度方向相反,做负功,使陀螺的总能量单调减小。根据式(16),总能量变化率为
再讨论质心平动动能KT 。刚开始释放时,陀螺的质心静止,接触点处的滑动摩擦力使得陀螺开始平动,KT 增加。翻转之后,摩擦力使质心减速,直到KT 减小到零。因此平动动能先增加后减小。
最后讨论转动动能KR 和重力势能UG 。结合图7 和式(30)可以定性解释为什么陀螺会翻转。当接触点的速度 如图7 所示时,俯视图中陀螺绕着其对称轴逆时针旋转,角动量向上, 。另一方面,滑动摩擦力沿着y 轴负方向,Ff,y< 0 。根据式(31),̂随时间减小。如果最后 ,陀螺翻转。在此过程中,摩擦力在ŷ方向的分力导致了从转动动能KR 到重力势能UG的能量转化。
图7 翻转陀螺的俯视图
评述:这两问需要用到微积分计算
B9
综上所述,滑动摩擦力的作用使陀螺的总能量单调减小。停止运动时,质心位于几何中心正上方。此时动能为零,重力势能保持不变,总能量不变,如图8(a)所示。翻转过程中,陀螺的质心升高,重力势能单调增加。最终质心稳定在几何中心上方,重力势能保持恒定,如图8(b)所示。平动动能先增加后减小,如图8(c)所示。整个过程中,因为滑动摩擦力的作用,转动动能转化为平动动能、重力势能和内能。整个过程中转动动能单调减少,如图8(d)所示。
图8 各种能量随时间的变化过程
B10
根据式(4)中的第一式和式(25)中的第二式,有
和3̂做矢量乘积:
B11
假设Jellett 积分的表达式为。对时间求导之后,利用角动量定理可得
如果上式右边的两项都恒等于零,则可以证明
为守恒量。
根据表达式
可知,若取 可使得 。
下面只需验证
。
根据定义,可知
。
再利用式(33),可得
。
综上。
C 部分:翻转条件
在第七问的讨论中,我们利用角动量定理定性说明摩擦力的力矩可能会使得角动量的竖直分量变号,从而发生翻转。但并没有给出这个翻转过程发生的条件。参考文献②与参考文献③从刚体力学出发给出了翻转陀螺运动的完整运动方程和翻转的条件。我们将文献中的结论概括如下。文献③的作者假定翻转陀螺只受到滑动摩擦力。滑动摩擦力使得陀螺的机械能单调减小,直到开始做纯滚动。此后陀螺的机械能守恒,其大小依赖对称轴的倾斜角θ。通过对机械能求极小值,作者证明翻转陀螺可能出现三种不同的转动状态:不翻转(质心在几何中心正下方)、翻转(质心在几何中心正上方)、倾斜转动(陀螺对称轴倾斜角θ不为零)。这三种状态下θ都不随时间变化。最后作者利用微分方程的稳定性理论证明,当陀螺的结构满足的条件
时陀螺会发生翻转。其中c 是一个常数。该证明依赖于一个很重要的假设:进入纯滚动的状态后,陀螺不受摩擦力。实际上,地面和陀螺之间可能存在静摩擦。考虑静摩擦后的运动方程见附录。综上所述,翻转陀螺的运动过程可以分为两个阶段:陀螺和地面相对滑动的阶段和纯滚动的阶段。这两个阶段的动力学共同决定了陀螺是否会翻转。根据微分方程理论,这两个阶段的动力学方程不可积,所以我们不能得到一个简单的判据来判断陀螺是否翻转。
赛题背景:
翻转陀螺
图9 中的两个老先生,对物理学做出过巨大贡献,年长点的叫玻尔,年轻点的叫泡利。尼尔斯·亨利克·戴维·玻尔(Niels Henrik David Bohr,1885 年10 月7 日~1962 年11 月18 日),丹麦物理学家,1922年获得诺贝尔物理学奖。玻尔引入量子化条件,解释了氢原子光谱,称为玻尔模型,还提出互补原理是哥本哈根学派的创始人,对20 世纪物理学的发展有着深远的影响。
图9
沃尔夫冈·泡利(Wolfgang E.Pauli,1900 年4 月25 日~1958 年12 月15 日),美籍奥地利裔物理学家,1945 年获得诺贝尔物理学奖。泡利提出了泡利不相容原理和β衰变中的中微子假说等,在量子力学、量子场论和基本粒子理论方面做出了重要贡献。
玻尔和泡利正在玩“翻转陀螺”,这是一头大一头小的对称陀螺。当陀螺大头朝下在地面上转动的时候,除了像普通陀螺那样绕着竖直方向进动意外,还有可能整体向下翻倒,以小头着地继续转动,正式因为如此,才叫做翻转陀螺。
陀螺旋转时,在不受外力影响时,其旋转轴所指的方向是不会改变的。根据这一道理,可以制造出各种陀螺仪。其实,我们日常骑行的自行车的轮子转动时不容易倒,就是因为车轴旋转时能够保持水平。
陀螺的运动是分析力学中的一类经典问题。对陀螺运动的研究既有着深刻的理论意义,又能推动技术的进步。从理论上看,利用欧拉角写出的陀螺运动方程通常都是非线性微分方程,这些方程只有在特定条件下才能求解析解。其中比较著名的就是不受外力(欧拉陀螺)和在恒定重力作用下的定点运动的情况(拉格朗日陀螺)。为了进一步研究陀螺运动的性质,数学家和力学学家们引入了很多新的数学工具,例如辛几何、拓扑学、李群,等等。这些理论研究揭示了陀螺运动的部分性质,也促进了相应数学工具的发展。
陀螺运动方程的精确解能帮助我们进一步提高仪器性能。以卫星为例,在绕地球转动的过程中,卫星在潮汐力的作用下有可能发生自转,影响卫星的正常功能。陀螺运动的理论可以帮助科研人员优化卫星内的质量分布,避免卫星自转,提高卫星工作性能。反之利用卫星的自转和进动,我们可以研究地球的潮汐力,从而推算地球的质量分布。
陀螺仪能够精确地确定运动物体的方位,在航空、航天、航海、航天等领域应用广泛。传统的惯性陀螺仪主要是机械陀螺仪,结构复杂,精度有限。新一代的光纤陀螺仪结构紧凑、灵敏度高、工作可靠,已经取代了机械陀螺仪,成为导航仪器中的关键部件。
本试题以翻转陀螺为研究对象,研究其物理原理。
欧拉角:
欧拉角是用来唯一地确定定点转动刚体位置的三个一组的独立角参量,由章动角θ、进动角ψ和自转角φ组成,最早是有大数学家L.欧拉提出,所以命名为欧拉角。
张量:
张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。矢量是一阶张量,张量概念是矢量概念的推广。
张量的术语起源于力学,最初是用来表示弹性介质中各点应力状态的,后来逐渐发展成为物理学的一个有力的数学工具。随着1915 年左右爱因斯坦的广义相对论的引入,张量微积分获得了更广泛的承认。张量可以满足一切物理定律必须与坐标系的选择无关的特性,因此非常重要。
参考文献
① 朗道: 力学. 高等教育出版社
② F. Scheck: Mechanics: From Newton’s Laws to Deterministic Chaos. Springe. P231-p238 (2010)
③ St. Ebenfeld, F. Scheck: Ann. Phys. (New York)243, 195(1995)
完 本文选自《现代物理知识》2020年第04 期 更多精彩《现代物理知识》
搜索微信号
mpihep
长按扫码关注我们