em算法 实例 正态分布_【机器学习】EM算法详细推导和讲解

本文介绍了EM(期望最大化)算法在处理高斯混合模型(GMM)时的应用。通过实例解释了EM算法如何解决带有隐变量的概率模型的参数估计问题,阐述了EM算法的E步和M步过程,并讨论了其收敛性和局限性。
摘要由CSDN通过智能技术生成

今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教。

众所周知,极大似然估计是一种应用很广泛的参数估计方法。例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差。这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度。

然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北人”还是“四川人”,我想如果把这个数据集的概率密度画出来,大约是这个样子:

好了不要吐槽了,能画成这个样子我已经很用心了= =

其实这个双峰的概率密度函数是有模型的,称作高斯混合模型(GMM),写作:

话说往博客上加公式真是费劲= =这模型很好理解,就是k个高斯模型加权组成,α是各高斯分布的权重,Θ是参数。对GMM模型的参数估计,就要用EM算法。更一般的讲,EM算法适用于带有隐变量的概率模型的估计,什么是隐变量呢?就是观测不到的变量,对于上面四川人和东北人的例子,对每一个身高而言,它来自四川还是东北,就是一个隐变量。

为什么要用EM,我们来具体考虑一下上面这个问题。如果使用极大似然估计——这是我们最开始最单纯的想法,那么我

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值