基于近场动力学的二维疲劳裂纹扩展模型_近场动力学数值模拟的程序实现(1)——引言...

本文介绍了基于近场动力学的二维疲劳裂纹扩展模型,探讨了Silling and Askari的无网格方法在计算材料破坏和断裂问题中的有效性。文章详细阐述了近场动力学的基本原理,包括无网格离散化、时间积分、键破坏定律的评估,并以Peridigm代码为例,展示了实现的关键组件。通过这种方法,可以对材料响应进行数值模拟,尤其适用于模拟中的材料破坏和断裂现象。
摘要由CSDN通过智能技术生成

参考书目

W. H. Gerstle. 2015. Introduction to Practical Peridynamic: Computational Solid Mechanics Without Stress and Strain.

E.Madenci, A.Barut, M.Dorduncu. Peridynamic Differential Operator for Numerical Analysis

地球物理学 地震波动力学研究所 近场动力学大组

# 声明
# 欢迎批评指正,禁止转载

目录

石中居士:近场动力学基础及其在地球物理学中的应用——目录​zhuanlan.zhihu.com
25738fecb33971aeade938e73076e54d.png

引 言

近场动力学已为在计算模拟代码中对材料破坏和破碎建模提供了最新技术。为了有效地对真实世界的系统进行建模,基础理论必须伴随有效的软件实现。本章的目的是提供一个在分析代码中实现近场动力学的路线图。这部分是由于存在于诸多有关近场动力学的文献之间的鸿沟而引起的,这通常侧重于理论考虑,而在实现中可能出现困难。

本章专注于介绍Silling and Askari[1]的无网格方法。迄今为止,绝大多数近场动力学模拟都采用了这种方法。专注于此特定计算策略的决定,并不意味着它优于其它可替代方法。例如,在某些情况下,将有限元技术应用于近场动力学可能会提供更好的结果。尽管如此,Silling and Askari的无网格方法已被证明是一种解决固体力学中普遍存在的材料破坏和断裂问题的可靠而有效的策略。其优势包括易于实现、计算效率高以及存在用于材料分离的自然机制。Silling and Askari的方法是线性动量近场动力学平衡的强形式的直接离散化[2]

其中

是材料密度,
是加速度,
是时间,
是材料点,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值