模型与logit_嵌套logit模型的STATA应用及结果解读

本文介绍了嵌套logit模型,它用于处理不符合IIA假设的离散选择模型。通过STATA操作,文章展示了如何定义嵌套结构并进行回归分析,分析了效用函数和数据,最后解释了回归结果,讨论了模型中的系数和类内方案不相似参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

选择实验获得的数据主要通过离散选择模型来完成。离散选择模型中,最主要的是logit模型。

之前已经介绍了二项logit模型回归的STATA实现(有修改),多项logit模型详解,多项logit模型回归系数解读,多项logit模型回归的检验,混合logit模型(随机参数模型)的STATA应用及结果解读,潜分类logit模型的STATA应用及结果解读。

继续认识嵌套logit模型。

01 嵌套logit模型简介

嵌套模型事实上是将变量分层进行考虑,可能有多个方案,并不是符合IIA假设,有些方案是相关的,嵌套模型通过分层,通过分层形成树形结构(如图1)。把总分类成为根部(root),第一层(level1)称为树干(limb),各类之间是不相关的,而第二层(level2)称为树枝(branch),每一类中的各个方案之间允许相关。不同类之间的方案是不相关的。也可以考虑设置为更多层的嵌套结构,例如树枝之下是树杈(twig)。

02 效用函数

效用函数可以写为:

其中:

j表示第一层第j类树干;k表示第二层第k个方案。

是同时随树干和树枝变动的方案,其系数
没有下标,不随j、k变动

是level 1 equation ,其中
按照第一层level1中类别给出,系数
只随j变动。

是Level 2 equation,其中
涵盖第二层level 2中所有随树枝变动的方案,系数
既随j变动,又随k变动。

03 数据继续

应用STATA官方系统数据inschoice.dta来介绍混合logit模型的回归程序。该数据是记录250人的可用保险方案和选定方案的信息,可选择的保险方案共5个:Health、HCorp、SickInc、MGroup、MoonHealth。根据选定信息和个体特征,共形成6个变量,id、premium、deductible、income、insurance、choice。在之前的文章中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值