选择实验获得的数据主要通过离散选择模型来完成。离散选择模型中,最主要的是logit模型。
之前已经介绍了二项logit模型回归的STATA实现(有修改),多项logit模型详解,多项logit模型回归系数解读,多项logit模型回归的检验,混合logit模型(随机参数模型)的STATA应用及结果解读,潜分类logit模型的STATA应用及结果解读。
继续认识嵌套logit模型。
01 嵌套logit模型简介
嵌套模型事实上是将变量分层进行考虑,可能有多个方案,并不是符合IIA假设,有些方案是相关的,嵌套模型通过分层,通过分层形成树形结构(如图1)。把总分类成为根部(root),第一层(level1)称为树干(limb),各类之间是不相关的,而第二层(level2)称为树枝(branch),每一类中的各个方案之间允许相关。不同类之间的方案是不相关的。也可以考虑设置为更多层的嵌套结构,例如树枝之下是树杈(twig)。
02 效用函数
效用函数可以写为:
其中:
j表示第一层第j类树干;k表示第二层第k个方案。
03 数据继续
应用STATA官方系统数据inschoice.dta来介绍混合logit模型的回归程序。该数据是记录250人的可用保险方案和选定方案的信息,可选择的保险方案共5个:Health、HCorp、SickInc、MGroup、MoonHealth。根据选定信息和个体特征,共形成6个变量,id、premium、deductible、income、insurance、choice。在之前的文章中