当一个序列满足对于任意的前 项和都满足不小于_时间序列分析第01讲--平稳序列(基本概念,线性平稳序列)...

第一章 平稳序列

1.1平稳序列基本概念

无论是从原序列中把趋势项去掉得到的随机波动项,还是用随机差分后得到残差序列,都会存在一种现象:随机项会沿着水平值波动,并且前后之间具有相关性,与独立序列不同

一、定义

定义1.1 如果时间序列

满足
  • 对任何
    ----等于没说,也就是随机变量性质稍微好点
  • 对任何
    ----这个也不本质,取0也可以
  • 对任何
    ---
    关键!

那么我们称

平稳的时间序列,简称为 平稳序列。称实数
自协方差函数.

例1.1 平稳序列的线性变换依然是平稳序列

为平稳序列,期望
,自协方差函数
。线性变换得到

那么

可见

为平稳序列.

如果取

,那么它的均值为0,方差为1,称为
的标准化序列.

例1.2 调和平稳序列

为常数,随机变量
,则

是平稳序列.

证明:验证期望为常数,协方差只与时间间隔有关

说明:计算期望时用到三角函数在一个周期内的积分为0。计算协方差时,用到积化和差公式得到一个常数加一个三角函数,然后用三角函数在一个周期内积分为0。

二、自协方差函数性质

自协方差函数有以下三条性质:

  • 对称性
  • 非负定性

对任意

是非负定矩阵
  • 有界性

对称性证明:用到了协方差的对称性

非负定性证明:

任取一个向量

,有

对于第一个等号,可以看做是一个求和,其中求和的每一项就是分别从三部分中取一个然后相乘,即

有界性证明:运用Schwarz不等式

反过来,只要实数列满足这三个条件,就可以构造随机序列,使得该序列的协方差函数为该给定的实数列!

三、非负定性、随机变量的线性相关

首先根据非负定性的证明有

进而如果

是退化(即非满秩),那么当且仅当存在
使得

此时称

是线性相关的.

更进一步,如果

是线性相关的,那么对于
也是线性相关的.

四、自相关系数

定义1.2 设平稳序列

的标准化序列为
.
的自协方差函数为

我们把这样标准化后序列的自协方差函数成为

的自相关函数.很多时候求自相关函数比求自协方差函数要容易,因为
不容易求出来.

五、白噪声、白噪声模拟

定义1.3 设平稳序列

,如果它满足

则称

为白噪声序列,记作
  • 如果序列是独立的,称为独立白噪声
  • 如果序列均值为0,称为零均值白噪声
  • 如果序列均值为0方差为1,称为标准白噪声
  • 如果
    服从正态分布,称为
    正态白噪声.

六、正交和不相关性

如果

不相关,如果
正交.

对于两个平稳序列

,其不相关和正交分别定义为
  • 不相关
  • 正交

之所以这样定义正交,是从几何角度来看。事实上对于所有二阶矩存在的随机变量,构成一个Hilbert空间,且Hilbert空间上内积就用数学期望来定义.

两个平稳序列之和是否还是平稳序列?下面这个定理给出了说明:

定理1.1 对于平稳序列

,自协方差函数
,期望为
.且令
,那么当
正交或不相关的时候,
是平稳的.

证明

二阶矩有界:

均值常数:

当正交的时候:

当不相关的时候:

1.2线性平稳序列和线性滤波

几种常用且重要的平稳序列

  • 有限运动平均
  • 线性平稳序列
  • 时间序列的线性滤波

一、有限运动平均

,对于常数
,称

是白噪声

有限运动平均,简称为 MA(moving average),运动平均又称滑动平均.
  • MA的平稳性

验证一下数学期望和自协方差函数的条件:

数学期望:

自协方差函数:

其中第3个等号利用白噪声的不相关性,只有

时,求和项的中数学期望不为0,因此固定
后,
只能取为
,并且
不能超过
,所以
不超过
.

二、线性平稳序列

将有限运动平均改为无穷项会发生什么?定义零均值白噪声的无穷滑动平均为

当满足

时,
是平稳序列,满足的这个条件也称为
绝对可和.

当求和项数无限时,不能够轻易将期望与求和交换,那么如何证明平稳?

定理2.1单调收敛定理)如果非负随机变量序列单调不减

,那么如果该序列的极限几乎处处收敛:
,则
,也就是期望与极限可交换.

利用这个定理,我们令

,显然这是一个单调不减的正随机变量序列,并且在广义随机变量(即随机变量可以是无穷大)假设下有

因此利用单调收敛定理得到

但是无穷滑动平均的定义中没有绝对值,怎么办?

定理2.2控制收敛定理)如果随机变量序列

满足
,也就是说该序列被一个期望存在的随机变量控制,那么如果该序列的极限存在:
,则
.

首先考察期望。由上面的讨论,我们得到在绝对值情形下的数学期望为

,而由Schwarz不等式以及绝对可和的条件,这个数学期望是有界的,而切比雪夫不等式告诉我们,一个期望有界的随机变量,是几乎处处有界的,因此
是有意义的,进而去掉绝对值符号后,
也是有意义的.

我们取

,取
,根据控制收敛定理期望与极限可交换,交换之后期望就为0了.

然后还要考察

的自相关函数,很自然会想到期望与求和交换,进而得到
与有限运动平均类似的结果:

至于为什么能交换,也就是单调收敛定理与控制收敛定理的应用,具体来说就是先考察各项都取绝对值后的期望是否存在,在这里就是

其期望可计算如下:

其中第一个等号运用单调收敛定理,即对于正项级数的期望和求和可交换,不等号运用了Schwarz不等式,最后一个小于号利用了绝对可和性。

最后说明一下二阶矩有界。这里也是Schwarz不等式的运用,如下:

注1:绝对可和条件下,如上定义的自协方差函数是绝对收敛的。

证明:

这说明了自协方差函数当

很大的时候,会很快趋于0,也就是说
时间间隔比较长的两个观测值之间相关性是比较小的。

单边线性序列:只对非负部分求和,即

,类似可以计算得到

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值