时域采样与频域采样实验报告_TAA 反走样算法研究 | 时域超采样技术

TAA(Temporal Anti-Aliasing)是一种流行的反走样技术,通过相机抖动获取子像素信息进行融合,实现时域上的超采样。文章详细介绍了TAA的主要思想,包括相机抖动、历史颜色融合,以及实现细节,如移动相机后的像素位置计算、遮挡/动态物体处理、物体边缘优化和闪烁问题。同时,提到了解决这些问题的方法,如颜色空间Clipping和Motion Vector优化。
摘要由CSDN通过智能技术生成

TAA (Temporal Anti-Aliasing) 是近年来商业引擎最流行的几种反走样算法之一。它以后处理的方式融入渲染流,良好的抗锯齿效果以及与延迟渲染的适配,使得业界游戏非常乐于采取这种抗锯齿方式。

TAA 开山作 Amortized Super Sampling 名称较为直观:样本点分摊在时域上的超采样。

虽然称为反走样技术,但个人更愿意将 TAA 看作一个通用的流程,任何想复用时域上像素信息的算法,都可以套入该流程里。

为了便于理解,我们分主体思想实现细节两部分讲解:

第一部分主要是为了帮助理解 TAA 的主要思想;第二部分为主体思想补充实现细节。两部分组合起来 Cover 了当前商用游戏引擎中 TAA 的实现流程。

TAA 主体思想

相机抖动

相机抖动是 TAA 能够反走样最本质原因。相机随时间抖动过程中,引入了额外的子像素信息,对子像素的融合,使我们在时域上获得超采样的效果,静态场景中效果与 SSAA 一致。

投影矩阵添加偏移量,使得光栅化的位置发生偏移。

14acda3f0db66796227b35f14478c4d7.png
虚线框显示子像素信息,黑色实线框表示实际光栅化的位置。中间图片左下角黑色箭头表示相机抖动对光栅化位置的影响(初始状态实线与虚线框重合)。最终得到右一,光栅化结果为实线
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值