写在前头
写这一块的初衷很简单,就是在给FLUENT k-\omega模型内嵌湍动能生成项的时候不知道 /omega 方程内浮升力生成项对\omega的影响。因为即便对于\epsilon,浮升力的作用机理也是不完全清楚的,对\omega方程而言,只能暂时参考\epsilon方程浮升力生项的作用机理。
因为柯神、Wilcox、Menter这些神仙对\omega的定义不太一致,加上又有各种修正,导致k-w方程的变种太多。目前主流的CODE (e.g. openfoam,star-ccm+,comsol,fluent)基本都涵盖std和sst两类(Wilcox…Menter…),这里分两部分推导sd和sst中浮升力项。因为各两方程的k方程基本是一样的,所以关注的重点在\omega方程中各生成项和耗散项。
如果考虑浮升力作用,说明物理问题已经不属于不可压缩范畴,在高温压情况下,粘度、比热、导热系数这些物性也不可当做常务性处理。如果考虑密度脉动,Favre averaging的雷诺应力关系又不明确。所以这里考虑低温压、弱变物性的情况。因为给的是推导过程,所以过程难免冗余,见谅。
推导过程
-
Wilcox中对比耗散率的定义
ε = β ∗ ω k \varepsilon = \beta ^ { * } \omega k ε=β∗ωk -
物质导数定义
D ( ρ ε ) D t = β ∗ ω D ( ρ k ) D t + β ∗ k D ( ρ ω ) D t \frac{{D(\rho \varepsilon )}}{{Dt}} = {\beta ^*}\omega \frac{{D(\rho k)}}{{Dt}} + {\beta ^*}k\frac{{D(\rho \omega )}}{{Dt}} DtD(ρε)=β∗ωDtD(ρk)+β∗kDtD(ρω)
这里 β ∗ \beta ^ { * } β∗暂时认为是常数,这符合STD模型特征,在SST模型中, β ∗ \beta ^ { * } β∗被定义为当地雷诺数的函数,不能轻易分离出来。 -
由式1和2可以得到\omega的全导数公式
D ( ρ ω ) D t = 1 β ∗ k D ( ρ ε ) D t − ω k D ( ρ k ) D t \frac{{D(\rho \omega )}}{{Dt}} = \frac{1}{{{\beta ^*}k}}\frac{{D(\rho \varepsilon )}}{{Dt}} - \frac{\omega }{k}\frac{{D(\rho k)}}{{Dt}} DtD(ρω)=β∗k1DtD(ρε)−kωDtD(ρk) -
k, \epsilon方程
D ( ρ k ) D t = D k μ + D k T + Π k + G k + P k − Φ k \frac { D ( \rho k ) } { D t } = D _ { k } ^ { \mu } + D _ { k } ^ { T } + \Pi _ { k } + G _ { k } + P _ { k } - \Phi _ { k } DtD(ρk)=Dkμ+DkT+Πk+Gk+Pk−Φk D ( ρ ε ) D t = D ε μ + D ε T + Π ε + G ε + P ε − Φ ε \frac { D ( \rho \varepsilon ) } { D t } = D _ { \varepsilon } ^ { \mu } + D _ { \varepsilon } ^ { T } + \Pi _ { \varepsilon } + G _ { \varepsilon } + P _ { \varepsilon } - \Phi _ { \varepsilon } DtD(ρε)=Dεμ+DεT+Πε+Gε+Pε−Φε
前式和后式等号右边各项分别表示湍动能(耗散率)粘性扩散项、湍流扩散项、压力扩散项、浮升力生成项、湍动能(耗散率)生成项、耗散项。 -
STD k-\epsilon方程
∂ ∂ t ( ρ k ) + ∂ ∂ x i ( ρ k u i ) = ∂ ∂ x j ( μ ∂ k ∂ x j ) + ∂ ∂ x j ( μ t σ k ∂ k ∂ x j ) + P k + G k − ρ ε \frac { \partial } { \partial t } ( \rho k ) + \frac { \partial } { \partial x _ { i } } ( \rho k u _ { i } ) = \frac { \partial } { \partial x _ { j } } ( \mu \frac { \partial k } { \partial x _ { j } } ) + \frac { \partial } { \partial x _ { j } } ( \frac { \mu _ { t } } { \sigma _ { k } } \frac { \partial k } { \partial x _ { j } } ) + P _ { k } + G _ { k } - \rho \varepsilon ∂t∂(ρk)+∂xi∂(ρkui)=∂xj∂(μ∂xj∂k)+∂xj∂(σkμt∂xj∂k)+Pk+Gk−ρε ∂ ∂ t ( ρ ε ) + ∂ ∂ x i ( ρ ε u i ) = ∂ ∂ x j ( μ ∂ ε ∂ x j ) + ∂ ∂ x j ( μ t σ ε ∂ ε ∂ x j ) + C 1 ε P k ⏟ P ε + C 1 ε C 3 ε G k ⏟ G ε − C 2 ε ρ ε 2 k \frac { \partial } { \partial t } ( \rho \varepsilon ) + \frac { \partial } { \partial x _ { i } } ( \rho \varepsilon u _ { i } ) = \frac { \partial } { \partial x _ { j } } ( \mu \frac { \partial \varepsilon } { \partial x _ { j } } ) + \frac { \partial } { \partial x _ { j } } ( \frac { \mu _ { t } } { \sigma _ { \varepsilon } } \frac { \partial \varepsilon } { \partial x _ { j } } ) + \underbrace { C _ { 1 \varepsilon }P _ { k } } _ { P _ { \varepsilon } } + \underbrace { C _ { 1 \varepsilon } C _ { 3 \varepsilon } G _ { k } } _ { G _ { \varepsilon }} - C _ { 2 \varepsilon } \rho \frac { \varepsilon ^ { 2 } } { k } ∂t∂(ρε)+∂xi∂(ρεui)=∂xj∂(μ∂xj∂ε)+∂xj∂(σεμt∂xj∂ε)+Pε C1εPk+Gε C1εC3εGk−C2ερkε2 -
公式3和4合并
D ( ρ ω ) D t = ( 1 β ∗ k D ε μ − ω k D k μ ) + ( 1 β ∗ k D ε T − ω k D k T ) + ( 1 β ∗ k Π ε − ω k Π k ) + ( 1 β ∗ k P ε − ω k P k ) + ( 1 β ∗ k G ε − ω k G k ) − ( 1 β ∗ k Φ ε − ω k Φ k ) \frac { D ( \rho \omega ) } { D t } = ( \frac { 1 } { \beta ^ { * } k } D _ { \varepsilon } ^ { \mu } - \frac { \omega } { k } D _ { k } ^ { \mu } ) + ( \frac { 1 } { \beta ^ { * } k } D _ { \varepsilon } ^ { T } - \frac { \omega } { k } D _ { k } ^ { T } ) + ( \frac { 1 } { \beta ^ { * } k } \Pi _ { \varepsilon } - \frac { \omega } { k } \Pi _ { k } ) +( \frac { 1 } { \beta ^ { * } k } P _ { \varepsilon } - \frac { \omega } { k } P _ { k } ) + ( \frac { 1 } { \beta ^ { * } k } G _ { \varepsilon } - \frac { \omega } { k } G _ { k } ) - ( \frac { 1 } { \beta ^ { * } k } \Phi _ { \varepsilon } - \frac { \omega } { k } \Phi _ { k } ) DtD(ρω)=(β∗k1Dεμ−kωDkμ)+(β∗k1DεT−kωDkT)+(β∗k1Πε−kωΠk)+(β∗k1Pε−kωPk)+(β∗k1Gε−kωGk)−(β∗k1Φε−kωΦk) -
比耗散率生成项
P ω = P ω = 1 β ∗ k P ε − ω k P k = C 1 ε ω k P k − ω k P k = ( C 1 ε − 1 ) ω k P k P _ { \omega } = P _ { \omega } = \frac { 1 } { \beta ^ { * } k } P _ { \varepsilon } - \frac { \omega } { k } P _ { k } = C _ { 1 \varepsilon } \frac { \omega } { k } P _ { k } - \frac { \omega } { k } P _ { k } = ( C _ { 1 \varepsilon } - 1 ) \frac { \omega } { k } P _ { k } Pω=Pω=β∗k1Pε−kωPk=C1εkωPk−kωPk=(C1ε−1)kωPk -
粘性扩散项
D ω μ = 1 β ∗ k D ε μ − ω k D k μ = 1 β ∗ k ∂ ∂ x j [ μ ∂ β ∗ ω k ∂ x j ] − ω k ∂ ∂ x j [ μ ∂ k ∂ x j ] D _ { \omega } ^ { \mu } = \frac { 1 } { \beta ^ { * } k } D _ { \varepsilon } ^ { \mu } - \frac { \omega } { k } D _ { k } ^ { \mu } = \frac { 1 } { \beta ^ { * } k } \frac { \partial } { \partial x _ { j } } [ \mu \frac { \partial \beta ^ { * } \omega k } { \partial x _ { j } } ] - \frac { \omega } { k } \frac { \partial } { \partial x _ { j } } [ \mu \frac { \partial k } { \partial x _ { j } } ] Dωμ=β∗k1Dεμ−kωDkμ=β∗k1∂xj∂[μ∂xj∂β∗ωk]−kω∂xj∂[μ∂xj∂k] = 1 k ∂ ∂ x j [ μ k ∂ ω ∂ x j + μ ω ∂ k ∂ x j ] − ω k ∂ ∂ x j [ μ ∂ k ∂ x j ] = \frac { 1 } { k } \frac { \partial } { \partial x _ { j } } [ \mu k \frac { \partial \omega } { \partial x _ { j } } + \mu \omega \frac { \partial k } { \partial x _ { j } } ] - \frac { \omega } { k } \frac { \partial } { \partial x _ { j } } [ \mu \frac { \partial k } { \partial x _ { j } } ] =k1∂xj∂[μk∂xj∂ω+μω∂xj∂k]−kω∂xj∂[μ∂xj∂k] = 1 k ∂ ∂ x j [ μ k ∂ ω ∂ x j ] + 1 k ∂ ∂ x j [ μ ω ∂ k ∂ x j ] − ω k ∂ ∂ x j [ μ ∂ k ∂ x j ] = \frac { 1 } { k } \frac { \partial } { \partial x _ { j } } [ \mu k \frac { \partial \omega } { \partial x _ { j } } ] + \frac { 1 } { k } \frac { \partial } { \partial x _ { j } } [ \mu \omega \frac { \partial k } { \partial x _ { j } } ] - \frac { \omega } { k } \frac { \partial } { \partial x _ { j } } [ \mu \frac { \partial k } { \partial x _ { j } } ] =k1∂xj∂[μk∂xj∂ω]+k1∂xj∂[μω∂xj∂k]−kω∂xj∂[μ∂xj∂k] = ∂ ∂ x j ( μ ∂ ω ∂ x j ) + 1 k μ ∂ ω ∂ x j ∂ k ∂ x j + ω k ∂ ∂ x j [ μ ∂ k ∂ x j ] + 1 k μ ∂ k ∂ x j ∂ ω ∂ x j − ω k ∂ ∂ x j [ μ ∂ k ∂ x j ] = \frac { \partial } { \partial x _ { j } } ( \mu \frac { \partial \omega } { \partial x _ { j } } ) + \frac { 1 } { k } \mu \frac { \partial \omega } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } + \frac { \omega } { k } \frac { \partial } { \partial x _ { j } } [ \mu \frac { \partial k } { \partial x _ { j } } ] + \frac { 1 } { k } \mu \frac { \partial k } { \partial x _ { j } } \frac { \partial \omega } { \partial x _ { j } } - \frac { \omega } { k } \frac { \partial } { \partial x _ { j } } [ \mu \frac { \partial k } { \partial x _ { j } } ] =∂xj∂(μ∂xj∂ω)+k1μ∂xj∂ω∂xj∂k+kω∂xj∂[μ∂xj∂k]+k1μ∂xj∂k∂xj∂ω−kω∂xj∂[μ∂xj∂k] = ∂ ∂ x j ( μ ∂ ω ∂ x j ) + 2 k μ ∂ ω ∂ x j ∂ k ∂ x j = \frac { \partial } { \partial x _ { j } } ( \mu \frac { \partial \omega } { \partial x _ { j } } ) + \frac { 2 } { k } \mu \frac { \partial \omega } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } =∂xj∂(μ∂xj∂ω)+k2μ∂xj∂ω∂xj∂k -
湍流粘性扩散项
湍流扩散项和压力扩散项两项一般会通过类比Boussinesq EVMS的方法合并为一项,这里统称为湍流粘性扩散项
D ω μ t = D ω T + Π ω = 1 β ∗ k ( D ε T + Π ε ) − ω k ( D k T + Π k ) D _ { \omega } ^ { \mu _ { t } } = D _ { \omega } ^ { T } + \Pi _ { \omega } = \frac { 1 } { \beta ^ { * } k } ( D _ { \varepsilon } ^ { T } + \Pi _ { \varepsilon } ) - \frac { \omega } { k } ( D _ { k } ^ { T } + \Pi _ { k } ) Dωμt=DωT+Πω=β∗k1(DεT+Πε)−kω(DkT+Πk) = 1 β ∗ k ∂ ∂ x j ( μ t σ ε ∂ β ∗ ω k ∂ x j ) − ω k ∂ ∂ x j ( μ t σ k ∂ k ∂ x j ) =\frac { 1 } { \beta ^ { * } k } \frac { \partial } { \partial x _ { j } } ( \frac { \mu _ { t } } { \sigma _ { \varepsilon } } \frac { \partial \beta ^ { * } \omega k } { \partial x _ { j } } ) - \frac { \omega } { k } \frac { \partial } { \partial x _ { j } } ( \frac { \mu _ { t } } { \sigma _ { k } } \frac { \partial k } { \partial x _ { j } } ) =β∗k1∂xj∂(σεμt∂xj∂β∗ωk)−kω∂xj∂(σkμt∂xj∂k) = 1 k ∂ ∂ x j ( μ t σ ε ∂ ω k ∂ x j ) − ω k ∂ ∂ x j ( μ t σ k ∂ k ∂ x j ) = \frac { 1 } { k } \frac { \partial } { \partial x _ { j } } ( \frac { \mu _ { t } } { \sigma _ { \varepsilon } } \frac { \partial \omega k } { \partial x _ { j } } ) - \frac { \omega } { k } \frac { \partial } { \partial x _ { j } } ( \frac { \mu _ { t } } { \sigma _ { k } } \frac { \partial k } { \partial x _ { j } } ) =k1∂xj∂(σεμt∂xj∂ωk)−kω∂xj∂(σkμt∂xj∂k) = 1 k σ ε ∂ μ t ∂ x j ∂ ω k ∂ x j + μ t k σ ε ∂ 2 ω k ∂ x j 2 − ω k ∂ ∂ x j ( μ t σ k ∂ k ∂ x j ) = \frac { 1 } { k \sigma _ { \varepsilon } } \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial \omega k } { \partial x _ { j } } + \frac { \mu _ { t } } { k \sigma _ { \varepsilon } } \frac { \partial ^ { 2 } \omega k } { \partial x _ { j } ^ { 2 } } - \frac { \omega } { k } \frac { \partial } { \partial x _ { j } } ( \frac { \mu _ { t } } { \sigma _ { k } } \frac { \partial k } { \partial x _ { j } } ) =kσε1∂xj∂μt∂xj∂ωk+kσεμt∂xj2∂2ωk−kω∂xj∂(σkμt∂xj∂k) = 1 σ ε ∂ μ t ∂ x j ∂ ω ∂ x j + ω k σ ε ∂ μ t ∂ x j ∂ k ∂ x j + μ t k σ ε ∂ ∂ x j ( k ∂ ω ∂ x j + ω ∂ k ∂ x j ) − ω σ k k ( μ t ∂ 2 k ∂ x j 2 + ∂ μ t ∂ x j ∂ k ∂ x j ) = \frac { 1 } { \sigma _ { \varepsilon } } \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial \omega } { \partial x _ { j } } + \frac { \omega } { k \sigma _ { \varepsilon } } \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } + \frac { \mu _ { t } } { k \sigma _ { \varepsilon } } \frac { \partial } { \partial x _ { j } } ( k \frac { \partial \omega } { \partial x _ { j } } + \omega \frac { \partial k } { \partial x _ { j } } ) - \frac { \omega } { \sigma _ { k } k } ( \mu _ { t } \frac { \partial ^ { 2 } k } { \partial x _ { j } ^ { 2 } } + \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } ) =σε1∂xj∂μt∂xj∂ω+kσεω∂xj∂μt∂xj∂k+kσεμt∂xj∂(k∂xj∂ω+ω∂xj∂k)−σkkω(μt∂xj2∂2k+∂xj∂μt∂xj∂k) = ∂ μ t ∂ x j ∂ ω ∂ x j + ω k σ ε ∂ μ t ∂ x j ∂ k ∂ x j + μ t σ ε ∂ 2 ω ∂ x j 2 + μ t k σ ε ∂ k ∂ x j ∂ ω ∂ x j + μ t ω k σ ε ∂ 2 k ∂ x j 2 + μ t k σ ε ∂ ω ∂ x j ∂ k ∂ x j − ω σ k k ( μ t ∂ 2 k ∂ x j 2 + ∂ μ t ∂ x j ∂ k ∂ x j ) =\frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial \omega } { \partial x _ { j } } + \frac { \omega } { k \sigma _ { \varepsilon } } \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } + \frac { \mu _ { t } } { \sigma _ { \varepsilon } } \frac { \partial ^ { 2 } \omega } { \partial x _ { j } ^ { 2 } } + \frac { \mu _ { t } } { k \sigma _ { \varepsilon } } \frac { \partial k } { \partial x _ { j } } \frac { \partial \omega } { \partial x _ { j } } + \frac { \mu _ { t } \omega } { k \sigma _ { \varepsilon } } \frac { \partial ^ { 2 } k } { \partial x _ { j } ^ { 2 } } + \frac { \mu _ { t } } { k \sigma _ { \varepsilon } } \frac { \partial \omega } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } - \frac { \omega } { \sigma _ { k } k } ( \mu _ { t } \frac { \partial ^ { 2 } k } { \partial x _ { j } ^ { 2 } } + \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } ) =∂xj∂μt∂xj∂ω+kσεω∂xj∂μt∂xj∂k+σεμt∂xj2∂2ω+kσεμt∂xj∂k∂xj∂ω+kσεμtω∂xj2∂2k+kσεμt∂xj∂ω∂xj∂k−σkkω(μt∂xj2∂2k+∂xj∂μt∂xj∂k) = 2 μ t k σ ε ∂ ω ∂ x j ∂ k ∂ x j + μ t ω k ( 1 σ ε − 1 σ k ) ∂ 2 k ∂ x j 2 + ω k ( 1 σ ε − 1 σ k ) ∂ μ t ∂ x j ∂ k ∂ x j + 1 σ ε ∂ μ t ∂ x j ∂ ω ∂ x j + μ t σ ε ∂ 2 ω ∂ x j 2 = \frac { 2 \mu _ { t } } { k \sigma _ { \varepsilon } } \frac { \partial \omega } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } + \frac { \mu _ { t } \omega } { k } ( \frac { 1 } { \sigma _ { \varepsilon } } - \frac { 1 } { \sigma _ { k } } ) \frac { \partial ^ { 2 } k } { \partial x _ { j } ^ { 2 } } + \frac { \omega } { k } ( \frac { 1 } { \sigma _ { \varepsilon } } - \frac { 1 } { \sigma _ { k } } ) \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } + \frac { 1 } { \sigma _ { \varepsilon } } \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial \omega } { \partial x _ { j } } + \frac { \mu _ { t } } { \sigma _ { \varepsilon } } \frac { \partial ^ { 2 } \omega } { \partial x _ { j } ^ { 2 } } =kσε2μt∂xj∂ω∂xj∂k+kμtω(σε1−σk1)∂xj2∂2k+kω(σε1−σk1)∂xj∂μt∂xj∂k+σε1∂xj∂μt∂xj∂ω+σεμt∂xj2∂2ω = 2 μ t k σ ε ∂ ω ∂ x j ∂ k ∂ x j + μ t ω k ( 1 σ ε − 1 σ k ) ∂ 2 k ∂ x j 2 + ω k ( 1 σ ε − 1 σ k ) ∂ μ t ∂ x j ∂ k ∂ x j + ∂ ∂ x j ( μ t σ ε ∂ ω ∂ x j ) = \frac { 2 \mu _ { t } } { k \sigma _ { \varepsilon } } \frac { \partial \omega } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } + \frac { \mu _ { t } \omega } { k } ( \frac { 1 } { \sigma _ { \varepsilon } } - \frac { 1 } { \sigma _ { k } } ) \frac { \partial ^ { 2 } k } { \partial x _ { j } ^ { 2 } } + \frac { \omega } { k } ( \frac { 1 } { \sigma _ { \varepsilon } } - \frac { 1 } { \sigma _ { k } } ) \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } + \frac { \partial } { \partial x _ { j } } ( \frac { \mu _ { t } } { \sigma _ { \varepsilon } } \frac { \partial \omega } { \partial x _ { j } } ) =kσε2μt∂xj∂ω∂xj∂k+kμtω(σε1−σk1)∂xj2∂2k+kω(σε1−σk1)∂xj∂μt∂xj∂k+∂xj∂(σεμt∂xj∂ω)输运方程内部出现湍流粘度的偏导数显然是不符合一般编程规范的,这里引入EVMS把湍流粘度去掉 ω k ( 1 σ ε − 1 σ k ) ∂ μ t ∂ x j ∂ k ∂ x j = ω k ( 1 σ ε − 1 σ k ) ∂ k ∂ x j ∂ ∂ x j ( ρ C μ k w ) = C μ ω k ( 1 σ ε − 1 σ k ) ∂ k ∂ x j [ ρ ∂ ∂ x j ( k w ) + k w ∂ ρ ∂ x j ] \frac { \omega } { k } ( \frac { 1 } { \sigma _ { \varepsilon } } - \frac { 1 } { \sigma _ { k } } ) \frac { \partial \mu _ { t } } { \partial x _ { j } } \frac { \partial k } { \partial x _ { j } } = \frac { \omega } { k } ( \frac { 1 } { \sigma _ { \varepsilon } } - \frac { 1 } { \sigma _ { k } } ) \frac { \partial k } { \partial x _ { j } } \frac { \partial } { \partial x _ { j } } ( \rho C _ { \mu } \frac { k } { w } ) = C _ { \mu } \frac { \omega } { k } ( \frac { 1 } { \sigma _ { \varepsilon } } - \frac { 1 } { \sigma _ { k } } ) \frac { \partial k } { \partial x _ { j } } [ \rho \frac { \partial } { \partial x _ { j } } ( \frac { k } { w } ) + \frac { k } { w } \frac { \partial \rho } { \partial x _ { j } } ] kω(σε1−σk1)∂xj∂μt∂xj∂k=kω(σε1−σk1)∂xj∂k∂xj∂(ρCμwk)=Cμkω(σε1−σk1)∂xj∂k[ρ∂xj∂(wk)+wk∂xj∂ρ]多出来了的密度项的偏导数!!有兴趣的可以继续把密度从偏导数内部分离出来。 -
浮升力生成项
G ω = 1 β ∗ k G ε − ω k G k G _ { \omega } = \frac { 1 } { \beta ^ { * } k } G _ { \varepsilon } - \frac { \omega } { k } G _ { k } Gω=β∗k1Gε−kωGk = 1 β ∗ k ( C 1 ε C 3 ε β ∗ ω k k G k ) − ω k G k = \frac { 1 } { \beta ^ { * } k } ( C _ { 1 \varepsilon } C _ { 3 \varepsilon } \frac { \beta ^ { * } \omega k } { k } G _ { k } ) - \frac { \omega } { k } G _ { k } =β∗k1(C1εC3εkβ∗ωkGk)−kωGk = ω k ( C 1 ε C 3 ε − 1 ) G k = \frac { \omega } { k } ( C _ { 1 \varepsilon } C _ { 3 \varepsilon } - 1 ) G _ { k } =kω(C1εC3ε−1)Gk -
耗散项
Φ ω = 1 β ∗ k Φ ε − ω k Φ k = 1 β ∗ k C 2 ε ε 2 k − ω k ε = ( C 2 ε − 1 ) β ∗ k ω 2 \Phi _ { \omega } = \frac { 1 } { \beta ^ { * } k } \Phi _ { \varepsilon } - \frac { \omega } { k } \Phi _ { k } = \frac { 1 } {\beta ^ { * } k } C _ { 2\varepsilon } \frac { \varepsilon ^ { 2 } } { k } - \frac { \omega } { k } \varepsilon = ( C _ { 2\varepsilon } - 1 ) \beta ^ { * } k \omega ^ { 2 } Φω=β∗k1Φε−kωΦk=β∗k1C2εkε2−kωε=(C2ε−1)β∗kω2 -
合并以上各项可得到