dparsf是什么_用rs-fmri数据画脑功能连接图

本文介绍了如何利用dparsf和GRETNA工具箱处理rs-fmri数据,构建和分析脑功能连接网络。首先讲解了大脑功能连接网络的基本概念,然后详细阐述了从fmri数据预处理到生成连接矩阵的过程,包括数据格式、预处理步骤等。接着介绍了GRETNA的使用方法,用于生成连接矩阵。最后提到了BrainNet Viewer用于绘制脑连接图,并提供了使用提示。
摘要由CSDN通过智能技术生成

前言:

个人为统计学背景,要用到脑连接图。过程大致为使用fmri数据获得连接矩阵,获得结点,然后画脑连接图。首先在R语言里找了几个包,但都没有达到目的。过程中发现几个matlab工具箱对于神经影像做得很好,首先是BrainNet viewer这个只能用来画脑图,没有数据分析的功能; 然后是dparsf,但它的功能太多,还没学懂怎么用,会在文中最后写一点,以后再补;最后是GRETNA,这个和个人目标基本一致,功能专注于连接图。

因为个人背景原因,对神经方面了解较少,因此没有直接了当地写操作过程,会同时写较多这方面的基础知识,写的时候也可能会犯常识性错误,望指出。好像脑功能连接网络挺火的,但网上并没有找到如何从fmri数据得到网络的具体教程,望后来初学者看了这篇初学者的教程能少走点坑。

文末附录有文中各种缩略词的解释。

介绍:

高中生物里就讲到大脑里有亿级数量的神经元,神经元之间通过突触连接,以进行信息交流及处理。所以大脑可以看作一个巨大的神经网络network,神经元为结点,突触为边,如果能够研究清楚这个巨大的网络是如何处理信息的,也就知道了大脑工作机理。

但就目前的科学技术而言,我们不可能监视大脑里数以亿级的每一个神经元,和无数的突触连接。但我们可以把大脑放在一个有网格的3维空间,测量每一个网格的核磁共振变化值。然后对大脑进行分区,如分为90个区域,每个区域包含多个网格,该区域核磁共振值为其包含的网格的值的平均值。可以把这90个区的每个区当作一个结点,如下图,

当然不止这一种分区方法,关于如何分区不用我们操心,已经有各种标准分区方法如这里是AAL90,其它还有AAL116,Brodmann82,Power264,...(BrainNet Viewer里面有的),不同的分区方法分区数量不同区的位置也不同。选定了分区方法就已知了结点,所以获得结点不用我们做任何计算或其它操作。

一般,仪器2s就可以对大脑进行一遍核磁共振扫描,得到一张3维图,即3维数据。如果每2s扫一次,扫多次,就可以得到随时间变化的一系列3维脑图,即再加一维时间维,为4维数据。对于大脑的某一个结点(固定前3维),可以得到一个时间序列(时间维变化),

每一个结点都如此。对于某两个结点,可以计算它们时间序列的pearson相关系数,如果超过既设阈值说明它们是协同,有连接的边(当然不是物理存在)。对任两个结点都计算相关系数值,就可以得到连接矩阵,也就得到了边。

从上面的描述可以知道得到的graph,其中的结点不是真实的神经元,而是人为进行的分区,其中的边也不是真实的突触,而是相关性或协同性定义的,因此称为功能连接网络。

rs-fmri,rs为resting state即静息态,指的是让被试处在不做任何任务时,采集fmri值。当然,在研究人做某些特定任务时的大脑活动,可以采集对应的fmri值。但实际上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值