上采样和下采样_消除Aliasing!加州大学&英伟达提出深度学习下采样新思路:自适应低通滤波器层...

论文提出了一种内容自适应低通滤波层,用于解决深度学习中下采样导致的锯齿(Aliasing)问题。该方法根据输入特征预测位置和通道特定的滤波权重,以更好地保留有用信息并减少Aliasing。通过在ImageNet分类、COCO实例分割和Cityscapes语义分割等任务上的实验,证明了该方法的有效性和泛化能力。
摘要由CSDN通过智能技术生成
编辑:Happy
首发: 极市平台
日期:2020-08-26

4e5f96efcdad857d5d1debb6b63c614f.png

paper: https://arxiv.org/abs/2008.09604

code: https://github.com/MaureenZOU/Adaptive-anti-Aliasing

【导语】该文是California大学&NVIDIA提出了一种消除Aliasing的方案。该文在AntialiasedCNN的基础上进行了更一步的改进,将固定模糊核改进为内容自适应低通滤波操作。作者还通过不同的任务验证了所提方法的有效性与泛化性能。

Abstract

​ Aliasing(锯齿)是采样过程中常见现象之一,它将高频信息退化成了更复杂的表现形式。在深度学习领域中,它长见诸于下采样层中(比如Maxpooling、StrideConv)。一种标准方案是在下采样之前进行低通滤波(比如高斯模糊),然而这种处理方案是次优方案:因为不同位置、不同通道的频率信息是不相同的。

​ 为解决上述问题,作者提出了一种内容自适应低通滤波层,它针对输入特征预测不同位置、不同通道的滤波权值。作者在多个任务(比如ImageNet分类、COCO实例分割、Cityscapes语义分割等)上验证了所提方案的有效性与泛化性能。定量与定性结果表明:所提方法可以具有特征频率自适应特性,在避免锯齿的同时保持有用信息。

Introduction

​ Aliasing指的是下采样过程中高频信息的畸变问题,Nyquist采样理论表明:采样率必须至少是最高频的两倍方可避免Aliasing问题。下图给出了1D信号的下采样Aliasing效应,可以看到经过下采样后输入与输出具有不同的表现形式。

b1deba3ad73fe695cf1965b248914714.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值