python时间序列预测报错_python如何做时间序列

本文介绍了使用Python进行时间序列预测的步骤,包括数据可视化、差分处理、ARIMA模型选择及Ljung-Box检验。通过示例展示了如何处理非平稳序列并进行模型预测。
摘要由CSDN通过智能技术生成

python做时间序列的方法:首先导入需要的工具包,输入“data.plot()”,“plt().show()”命令绘制时序图;然后由acf,pacf判断模型参数即可。

采用python进行简易的时间序列预测流程

时间序列可视化——>序列平稳——>acf,pacf寻找最优参——>建立模型——>模型检验——>模型预测

涉及到的工具包如下:# -*- coding:utf-8 -*-

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from random import randrange

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

from statsmodels.tsa.arima_model import ARIMA

from statsmodels.api import tsa原始数据

时间序列是与时间相关的一组数据,这里的数据主要是生成的模拟数据,仅是为了练习一下处理【时间序列】的流程。def generate_data(start_date, end_date):

df = pd.DataFrame([300   i * 30   randrange(50) for i in range(31)], columns=['income'],

index=pd.date_range(start_date, end_date, freq='D'))

return df

data = generate_data('20170601', '20170701')

# 这里要将数据类型转换为‘float64’

data['income'] = data['income'].astype('float64')

数据可视化

这里主要是观察数据是否是平稳序列,如果不是则要进行处理转换为平稳序列1

# 绘制时序图data.plot()

plt.show()

# 绘制自相关图

plot_acf(data).show()

从时序图中可以看出这组序列存在明显的增长趋势。不是平稳序列

acf图呈现出三角对称趋势,进一步说明这组时间序列是一组单调趋势的非平稳序列。

差分–转换为平稳序列

# 差分运算

# 默认1阶差分data_diff = data.diff()

# 差分后需要排空,data_diff = data_diff.dropna()

data_diff.plot()

plt.show()

可以看到在1阶差分后序列已经转换为平稳序列。

由acf,pacf判断模型参数plot_acf(data_diff).show()

plot_pacf(data_diff).show()

这里选用ARIMA模型,参数为(1, 1, 1)

模型训练arima = ARIMA(data, order=(1, 1, 1))

result = arima.fit(disp=False)

print(result.aic, result.bic, result.hqic)

plt.plot(data_diff)

plt.plot(result.fittedvalues, color='red')

plt.title('ARIMA RSS: %.4f' % sum(result.fittedvalues - data_diff['income']) ** 2)

plt.show()

模型检验

这里选择了 ‘Ljung-Box检验’,

# ARIMA   Ljung-Box检验 -----模型显著性检验,Prod> 0.05,说明该模型适合样本resid = result.resid

r, q, p = tsa.acf(resid.values.squeeze(), qstat=True)

print(len(r), len(q), len(p))

test_data = np.c_[range(1, 30), r[1:], q, p]

table = pd.DataFrame(test_data, columns=['lag', 'AC', 'Q', 'Prob(>Q)'])

print(table.set_index('lag'))

检验的结果就是看最后一列前十二行的检验概率(一般观察滞后1~12阶),如果检验概率小于给定的显著性水平,比如0.05、0.10等就拒绝原假设,其原假设是相关系数为零。就结果来看,如果取显著性水平为0.05,那么相关系数与零没有显著差异,即为白噪声序列。

模型预测

# 模型预测pred = result.predict('20170701', '20170710', typ='levels')

print(pred)

x = pd.date_range('20170601', '20170705')

plt.plot(x[:31], data['income'])

# lenth = len()

plt.plot(pred)

plt.show()

print('end')

您可能感兴趣的文章:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值