
分数化为小数是唯一的吗?我曾经问过很多人这个问题,大部分人的答案都是唯一。但真理往往掌握在少数人手里,严谨的答案是不一定唯一。
比如1/4这个分数,既可以等于0.25,也可以等于0.24999…。前者是一个有限小数,后者是一个无限循环小数。
很显然,
问题出在无限循环小数0.999…和1的关系上。这是很多孩子经常会问的一个问题:0.999…和1哪个大?
很多没学过高等数学的人,都会觉得0.999比1小,因为感觉中间差一点。但正确答案是二者一样大。
这个问题的严格证明,得从实数的构造开始说起,证明过程有点过于数学,在此不做详细介绍,感兴趣的朋友可以参阅《陶哲轩实分析》。今天我们介绍几种不太严谨的初等数学的方法。
方法一:
利用解方程的思路,
假设0.999…=x,考虑10x的值。
10x=9.999…=9+x,化简即9x=9,
解方程可得x=1。
方法二:
利用不等式和实数的稠密性,
假设0.999…=x,且x<1,
则0.999…< (x+1)/2 <1,
但满足条件的(x+1)/2不存在,
这说明假设不成立,即x不小于1,
注意到x不可能大于1,
因此x=1。
方法三:
利用k/9化为无限循环小数的性质,
由于1/9=0.111111……,
因此0.999…=9*0.111…=9*1/9=1。
方法四:
利用k/9化为无限循环小数的性质,
由于1/3=0.333333……,
因此0.999…=3*0.333…=3*1/3=1。
方法五:
利用无穷项等比数学求和公式,
由于0.999…=0.9+0.09+0.009+…,
而0.9,0.09,…是等比数列,
首项是0.9,公比是0.1。
根据等比数列的求和公式,
0.999…=0.9/(1-0.1)=1。
注:需要说明的是,所有采用四则运算的初等方法都不严谨,只能用于辅助孩子加深对无限循环小数的理解。
既然0.999…和1是相等的,可得
0.24999…=0.24+0.01*0.999…=0.25,因此1/4化为小数后并不唯一。一般的
,所有可以化为有限小数的分数,都可以写成类似的无限循环小数,所以分数化为小数并不一定唯一。
思考题:(4星难度)
用n!表示不大于n的所有正整数的乘积,问有多少个正整数n,使(n+2020)!/[(n!)*(2020!)]是正整数?
欢迎把您的答案写在留言区。都看到这里了,顺便点个“在看”吧。