分数化简_分数化为小数是唯一的吗?

ac6fdd189e1f443797b7fbf7e776bea9.png 分数化为小数是唯一的吗?我曾经问过很多人这个问题,大部分人的答案都是唯一。但真理往往掌握在少数人手里,严谨的答案是不一定唯一。   比如1/4这个分数,既可以等于0.25,也可以等于0.24999…。前者是一个有限小数,后者是一个无限循环小数。   很显然,问题出在无限循环小数0.999…和1的关系上。这是很多孩子经常会问的一个问题:0.999…和1哪个大?   很多没学过高等数学的人,都会觉得0.999比1小,因为感觉中间差一点。但正确答案是二者一样大。   这个问题的严格证明,得从实数的构造开始说起,证明过程有点过于数学,在此不做详细介绍,感兴趣的朋友可以参阅《陶哲轩实分析》。今天我们介绍几种不太严谨的初等数学的方法。   方法一: 利用解方程的思路, 假设0.999…=x,考虑10x的值。 10x=9.999…=9+x,化简即9x=9, 解方程可得x=1。   方法二: 利用不等式和实数的稠密性, 假设0.999…=x,且x<1, 则0.999…< (x+1)/2 <1, 但满足条件的(x+1)/2不存在, 这说明假设不成立,即x不小于1, 注意到x不可能大于1, 因此x=1。   方法三: 利用k/9化为无限循环小数的性质, 由于1/9=0.111111……, 因此0.999…=9*0.111…=9*1/9=1。   方法四: 利用k/9化为无限循环小数的性质, 由于1/3=0.333333……, 因此0.999…=3*0.333…=3*1/3=1。   方法五: 利用无穷项等比数学求和公式, 由于0.999…=0.9+0.09+0.009+…, 而0.9,0.09,…是等比数列, 首项是0.9,公比是0.1。 根据等比数列的求和公式, 0.999…=0.9/(1-0.1)=1。   注:需要说明的是,所有采用四则运算的初等方法都不严谨,只能用于辅助孩子加深对无限循环小数的理解。   既然0.999…和1是相等的,可得 0.24999…=0.24+0.01*0.999…=0.25,因此1/4化为小数后并不唯一。一般的,所有可以化为有限小数的分数,都可以写成类似的无限循环小数,所以分数化为小数并不一定唯一。   思考题:(4星难度) 用n!表示不大于n的所有正整数的乘积,问有多少个正整数n,使(n+2020)!/[(n!)*(2020!)]是正整数? 欢迎把您的答案写在留言区。都看到这里了,顺便点个“在看”吧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值