点到曲线的距离_如何从“圆锥”曲线到圆锥曲线

b9480eb8c32a36e0f1e7c0578e9d9ed4.png

文章介绍

全文配图,便于理解,严谨推导放在最后。

提前说明关键步骤:

推导第一定义时:将两条焦半径利用切线长定理转换为到圆锥面两点距离。

推导第二定义时:将焦半径和到准线的距离利用垂直条件转化成圆锥轴线长。

文章分为六个部分:

一、圆锥曲线,圆锥曲线的定义。

二、圆锥曲线的第一定义与“圆锥”曲线。

三、圆锥曲线的第二定义与“圆锥曲线。

四、圆锥曲线的一般性质。

五、上述一~四的过程推导。

一、圆锥曲线[1]

圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线,在笛卡尔坐标系中全部为二次曲线。

07877773066d1eaac28fa0fc2055397e.gif
图1-1

所截圆锥曲线是抛物线、椭圆还是双曲线可由离心率

判断,具体可看
第五部分 性质1以及 第六部分第二节 离心率分析

二、第一定义

1、抛物线

由第五部分性质1知,当

时,所截图形为抛物线,在空间中找到公切球(参考第五部分第3节-
寻找公切球)。

圆锥的顶点设为

,此时仅有一个公切球,设球心为
,记为球
,与截面交点为
,与圆锥的交线设为圆
,在椭圆上任取一点
的交点设为

846f2176813b54728e0cbe3a2e4fafb8.png
图2-1-1

6001ed8f38432b40c1e6b45e699e7d40.gif
图2-1-2

后续归于第三部分,统一证明。

2、椭圆

设圆锥顶点为

找到两个公切球,球心分别设为

,
,记为
.
与截面的切点分别为
,与圆锥的交线设为圆

在椭圆上任取一点

,连接直线

173eba976427b0674cacbc4084328cd1.gif
图2-2-1

9b61f2302d6abc81e6030b8812b0ed0c.gif
图2-2-2 再xOy平面的投影

f558e6bc129cb5fa5e297253e27dcdc3.gif
图2-2-3

3、双曲线

设圆锥顶点为

,

找到两个公切球,球心分别设为

,
,记为球
,球
,
与截面的切点分别为
,与圆锥的交线设为圆

在双曲线上任取一点

,连接直线

24aede8a86c4ccc52f83a9c9f99fc29e.gif
图2-3-1

三、第二定义

这一部分的点很多,但是清楚其中的重要步骤就很好理解:

将有关边全部和圆锥轴线上的长度联系起来

以椭圆为例,设靠近原点的焦点为

b345084952fb046c12f48688d8788d59.gif
电脑突然黑屏,保存下来得只有这一张了

1、过

点作圆锥轴线的法平面交圆锥于圆
,这样就有了

这样就得到了

在轴线上的投影长度

2、其对应公切球为球

,球
与圆锥公切线为圆
.

所在平面与
平面的交线为
(这就是第二定义中的准线),
轴于

平面内
于点
,然后设
轴于

这样四边形

就是一个矩形,点
到准线的距离

又有

轴线与

轴的夹角为

3、由(3-1)以及(3-4),得

这就是圆锥曲线第二定义也就是统一定义得内容。

四、圆锥曲线的性质

性质1 由平面与圆锥所截得到的圆锥曲线的离心率

,其中
为圆锥轴线与截平面法线的夹角,
为圆锥轴线与母线的夹角。

五、证明

1、圆锥曲线是二次曲线[2]

首先要知道圆锥的方程。

f327af98f2e8e3376a4f23f77ab4dcf0.png
图5-1-1

为圆锥轴线,
圆锥
的法截面交线任一点,设
为圆锥母线与轴线的夹角,即

为定值,根据

,当
一定时,我们可以得到圆锥最简单的三维方程:

fd395846a6bd0a2661f0818a5393b8c2.png
图5-1-2

这就是以原点

为顶点,轴线为
,母线与轴线夹角为
的圆锥。

为了便于观看,我们选择固定平面,旋转圆锥截取圆锥曲线。

取截平面为

平面,圆锥顶点为
,其中
 时为退化情况,圆锥与平面仅有以下三种情况:
(a) 仅有交点 
(b)交线为一条直线,即  轴
(c)交线为相交于  的两条直线
图略

圆锥方程为

圆锥绕

轴旋转,旋转角度为
时为

c430d97e545c41f252cdf4c6e0177504.png
图5-1-3

最后的旋转效果即为图2-1。

然后在

式中令

可以看出方程的最高次项是2次,说明这是二次曲线

2、离心率分析[3]

化简

得到一般方程

方程关于

轴对称,不妨设

(1)

得到圆,离心率

(2)

二次项系数均大于0,为椭圆,半焦距

这样算出离心率

(3)

得到抛物线,离心率

(4)

得到双曲线,半焦距

相同,这样离心率也和
相同

综上所述,我们可以得出结论:

圆锥曲线的离心率

,其中
为圆锥轴线与截平面法线的夹角,
为圆锥轴线与母线的夹角。

3、寻找公切球

寻找公切球即要找到与截平面相切、在圆锥内部且与圆锥相切的球。

设球心

坐标为
,
为球心到顶点
的距离。

注意到其中

(a)当

时, (5-3-1)仅有唯一解,解得

球心坐标为

,半径

(b)当

时,(5-3-1)解出

得到这些数据后,我们就可画出(2-1)等图像。

4、计算准线位置

在寻找公切球的过程中,公切球的在

的切点即为焦点坐标

取焦点

要验证第二定义还要知道它的准线,根据定义式计算焦准距

所以准线方程为

这与三中利用平面截出的直线是相同的。

参考

  1. ^圆锥曲线百度百科 https://baike.baidu.com/item/%E5%9C%86%E9%94%A5%E6%9B%B2%E7%BA%BF/6691222?fr=aladdin
  2. ^二次曲线?圆锥曲线?画图试试 https://zhuanlan.zhihu.com/p/129034953
  3. ^离心率 https://zhuanlan.zhihu.com/p/129034953
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值