无穷级数求和7个公式_数字、数论、数列、级数

354707c362c1837f9708634af9301278.png

本篇内容在知识地图的位置:

b9c17ee3bb389b4e55b9bb584ff8ae6a.png

数字:

2a8b8625ad798c93684d35cd1be2eef8.png

上图参考文本:

《数字起源

数的概念 从具体到抽象 奇数与偶数

质数

素数

13:虚数:虚构这个工具有什么用? 催化剂、传声筒

时空连接

坐标系

14:无穷:如何理解无限大的世界? 无穷大数 希尔伯特酒店

无穷大数有大小(3层) 数字

线段,平面,空间的点数

连接两点的线段数

有可能部分等于整体

无穷小 15:无穷小(一):如何说服“杠精”芝诺

16:无穷小(二):牛顿和贝克莱在争什么?

17:无穷小(三):如何用动态的眼光看世界?

18:“无穷大”和“无穷小”比大小,能得出什么?

19:复盘:数学给了我什么?

方程 11:鸡兔同笼:方程这个工具为什么很伟大?

12:三次方程:数学史上著名的发明权之争

数列 数列的概念 数列 数列与函数

数列的图象

通项公式与解析式

数列的单调性

数列的周期性

特殊数列 斐波拉契数列

其他

数列项的可重复性 常数列

构造常数列求通项

构造常数列证明等式

等差数列与等比数列的判定 等差数列与等比数列的定义 等差数列的判定

等比数列的判定

数列中的恒等式与数列分解

等差数列与等比数列的通项 等差数列的通项

等比数列的通项

等比数列项的唯一性与项不能为0

等差数列的公差为0的情况

数列中的公共项 等差数列中的公共项

等差与等比数列的公共项

数列中的任意三项 数列中存在或不存在三项成等差、等比

等差等比数列的性质 等差等比数列的性质 等差数列的性质

等比数列的性质

等差前n项和的性质

等比前n项和的性质

数列的单调性与图象 等差数列的单调性

等比数列的单调性

等差等比数列的图象

等差数列的前n项和

等比数列的前n项和

等比数列前n项和和公式特征

等差数列的函数特征

等比数列公比的讨论

数列问题常用的数学思想方法 特殊化求项

方程思想

整体思想

恒等策略

基本量法

类比推理

数列的加减与乘除与通项 加减 sn-sn-1

多次做差

累加法

乘除 累乘

因式分解

递推消元

迭代

取对数

取倒数

构造 观察配凑

代入法构造等比

待定系数法

换元法

数列求和与综合应用 一般的数列求和 分组

倒序

裂项

错位

并项

分段

奇偶分析法 求通项

求和

数列种的最值问题 等差前n项和

利用函数单调性

无穷级数 常数项级数 常用级数 p级数

等比级数

正项级数 比较法

比较法极限形式

比值法

根值法

充分非必要

积分判别法

交错级数 莱布尼茨准则

任意项级数 绝对收敛,条件收敛

幂级数 收敛半径,收敛区间,收敛域 阿贝尔定理

性质 有理运算性质

分析性质 连续性,可积性,可导性

幂级数展开

题型 判断敛散性

求收敛半径、收敛域

级数求和 幂级数

常数项级数

展开成级数(注明收敛域)

出题角度 数列极限结合级数审敛

幂级数结合微分方程、数列

傅里叶级数 傅里叶级数

傅里叶系数

狄利克雷收敛定理

展开 周期为2l

奇偶函数

题型 傅里叶展开

收敛定理

1级数的概念与性质 定义

性质1

性质2

注 若一个收敛,一个发散,则和一定发散。

性质3 改变前有限项不影响级数的敛散性

性质4 收敛级数加括号仍收敛,且和不变 注 一个级数加括号后收敛,原级数不一定收敛;一个级数加括号后发散,则原级数一定发散。

性质5

推论

2级数的收敛准则 正项级数 定理1

定理2(比较判别法) 若0≤un≤vn,则

定理3(比较判别法的极限形式)

定理4(比值判别法)

定理5(根值判别法)

交错级数 定理(莱布尼茨判别法)

任意项级数 绝对收敛与条件收敛

绝对收敛与条件收敛的一些基本结论

3函数项级数和幂级数 函数项级数、收敛域与和函数 定义1

定义2

幂级数的收敛半径、收敛区间与收敛域 定义1

定理1(阿贝尔定理)

定义2

定理2

定理3

4幂级数的性质 运算性质

和函数的性质

5函数的幂级数展开式 泰勒级数

麦克劳林级数

泰勒级数的收敛定理 定理

常用的麦克劳林展开式

6傅里叶级数 以2l为周期的傅里叶级数

傅里叶系数 定理(收敛定理)

参考书

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值