无穷级数求和7个公式_0.1.6 泰勒级数与无穷级数

在0.1.3节给出可微性和可导性的定义之后,提到了可以利用

写成
的形式,从而把
作为
的近似描述,剩下的那个
就是这个近似带来的误差。考虑未知函数
,假定只知道
时函数值为
,那么自变量取为
时就可以认为
。显然这样的近似描述是很粗糙的,读者不妨回顾一下图 1-1-6中所示的可微性示意,当
的偏差增大时,这样的近似描述带来的误差很可能增大到实际上不能允许的程度。

解决这一问题的关键是,考虑精确表达式

中的那个
的高阶无穷小量。回顾高阶无穷小量的定义可知,无论
的具体表现形式是什么,它与
的比值的极限都是
,那么不妨考察一下它与
的比值的极限,来看看
内部还有些什么东西。

计算这个极限的过程中需要连续两次使用洛必达 法则(读者可参阅有关文献,例如[4]),这要求

处二阶可导,具体过程如下

得到

,因而

继续考虑

的比值的极限,如果
处三阶可导,那么有
,利用它就能得到
的更准确的描述。以此类推地,
如果
阶可导,那么

这就给出了用

的各阶导数来共同近似描述
的方法,式
称为泰勒公式(带皮亚诺余项的形式)

如果

处任意阶可导,那么形式上地把式
中的
取为无穷大,就可以得到
,这似乎表明只要
处任意阶可导,总可以用这样的无限和式来精确描述所有
的实际情况,但事实是否真的如此?无限和式是否能最终等于某个确定的数,即使它等于某个确定的数,这个数是否就是真实的
,还必须进一步讨论。

最一般地,和式

称为无穷级数,如果
存在,就说无穷级数收敛并把这个极限称为无穷级数的和,否则说无穷级数发散
。很容易构造出那些发散的情况,例如级数
就是发散的。显然的一点是,
如果级数
收敛,必然有
(否则
肯定会随着参与求和的项数越来越多而趋向正或负无限大)。

首先考虑

中各个
均大于
的情况,这称为正项级数
。设 两个正项级数
,从某一项开始始终有
,那么显然:a)如果
收敛则
必收敛;b)如果
发散则
必发散
,这是判定正项级数收敛的最简单的一种方法。

应用这个方法,可以知道

因此
发散,这称为调和级数。另一方面,等比级数
时显然是收敛的,利用等比数列的前
项和公式并取极限就知道它的和正是

借助上面刚说的判别方法,以

为参照就知道,
如果正项级数
满足从某一项之后开始总是有
(或等价地写为
)并且
,则
必收敛。
这一方法也可写成极限形式:
,当
时正项级数
必收敛,称为柯西判别法。

上面研究的只是正项级数,如果某个级数从某一项之后开始全是负数,则也可以等效地转化为正项级数来研究,因此这类“负项级数”是否收敛的判断也比较简单。

另一种简单情形是

随着
的变化交替地出现正数和负数,
例如级数
这样的级数称为交错级数。对于 交错级数
,若从某项开始之后总有
,则该级数收敛,这称为交错级数的莱布尼茨定理
。这一定理从直观上看也是显然的,
意味着下一项加上的数总比本项减去的数小,而下下一项又减去的数总比下一项加上的数小,因而这一级数最终必然“摇摆着”趋向某个确定的值。

最麻烦的是

随着
的变化无规律地出现正数和负数的情况,比较简单的情形是,
如果
收敛则
必然收敛,这时称
绝对收敛。
对于一般情况,给出一个通用的判断无穷级数是否收敛的方法是相当困难的,这里就不再展开了,感兴趣的读者可参阅文献[6]。

现在回到本节最开始想探讨的问题:无限和式

是否收敛?应用上述的比较方法可以知道,
如果已经找到某个
使得级数
收敛,则对任意
,级数
必然绝对收敛。
于是,对于使级数
收敛的所有
的集合,令
(严格地应当是这个集合的上确界)则
时必然绝对收敛,在
时显然发散,但
时只能具体情况具体分析了,
称为级数
的收敛半径。

当然也存在某些级数,在所有的

都收敛,这时说它的收敛半径是无穷大。

进一步地,考虑把

各项全取绝对值以后所得的级数
,由柯西判别法,如果
确实存在(且一般地
的函数),那么在那些使得
处,级数
必然绝对收敛,于是有判断方法:
对于
,若
(严格地应为上极限,即
的所有可能的子列的极限的上确界,这是由于刚介绍的收敛半径的特点所决定的)则该级数在
的所有
处收敛,而
正是其收敛半径。
如果
则级数
必然在
上收敛。

现在可以回答本节刚开始的问题,如果从

所得的泰勒级数收敛,那么在它的收敛区域内这级数必然逐点收敛到相应的

利用泰勒级数并结合上一节得到的

这一事实,考虑函数
处的泰勒级数,简单计算后可以知道

并且可以知道这级数的收敛区域是全体实数(事实上,这正是现代数学中对

的严格定义 )。同样地,读者可以计算其他基本初等函数在任意
处的泰勒级数。

利用这一方法,考虑函数

处的泰勒级数,经过不太复杂的计算可以知道

这下问题出现了,函数

显然在
上都有定义并且在
处无穷阶可导,但为何它的泰勒级数只在
时收敛?如果把它换成在
处的泰勒级数,同样可以得到
并且它的收敛区域是
,熟悉数轴的读者肯定会意识到这背后一定有着某种数学上的原因,使得这个函数的泰勒级数的收敛区域如此奇怪,这个原因将在后面的章节介绍。

介绍到这里,一元函数的导数、微分、不定积分、定积分、反常积分、泰勒级数及无穷级数等概念就已经介绍完毕了。在一元函数的情况下,自变量x的变化方式是相当简单的(几何上点x只能在数轴上运动)因此对于一元函数

的讨论也比较简单。但是,只使用一元函数所能分析和处理的问题是极为有限的,例如读者熟悉的质点在空间中的运动问题,就同时跟4个变量有关系(3个描述空间位置的变量和1个时间变量),这类问题只借助一元函数微积分的工具是无法分析的。

因此,讨论多元函数的微积分学就成为相当迫切的需要,从下一章开始就进入多元函数及其微积分学的讨论。在此之前需要建立数学上的空间的概念,才能在这样的基础上讨论多个自变量的变化方式并讨论函数在各种变化方式下的行为。

参考文献:

[6] [俄]菲赫金哥尔茨. 微积分学教程. 第2卷:第8版[M]. 徐献瑜,冷生明,等,译. 2版. 北京:高等教育出版社,2006.

公众号:强电弱电那些事

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值