无穷级数求和7个公式_你绝对从未见过的有关黎曼ζ函数的一堆可爱级数

本文探讨了黎曼ζ函数的级数求和,通过比较、复变函数和留数定理等方法,揭示了一系列有趣的数学规律。介绍了如何求解包括巴塞尔问题在内的多个级数,并给出了具体的计算过程和应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

36811d8b2aaf8dbc47186d366da90be5.png

定义:

注:本文仅讨论未解析延拓(即仅为级数定义)的、实数范围内的黎曼Zeta函数。

它图像长这样:

53bcc52d3ba656db044180ef02de40fc.png

可以看出:

本文分为三大部分:

  • 第一部分:用最“笨”的方法求出
    ……的精确值,并总结规律
  • 第二部分:逐一攻克17个级数,绝对刺激,注意总结技巧哦
  • 第三部分:用留数大法推出

一、仅通过比较

的无穷级数展开与无穷乘积展开中特定次数项的系数求出
……的精确值

眼熟吧。相信很多人都能用这个法子求出

来,但其实这个方法可以求出
在任意正偶数处的函数值!

的无穷级数展开:

的无穷乘积展开:

1.

首先来看

这正是著名的巴塞尔问题。

比较

式中
二次项系数可得:

解得:

这个方法正是欧拉最初使用的。巴塞尔问题的解法很多,比如使用傅里叶级数。

我有篇文章写了用留数定理的方法,供参考:

https://zhuanlan.zhihu.com/p/143842181​zhuanlan.zhihu.com
d7a045a86cc5cf184dbb680a7a04e378.png

(本文后面出现的

在这篇文章里有类似证明,就不再证喽。/逃)

2.

比较

式中
四次项系数可得:

解得:

3.

比较

式中
六次项系数可得:

解得:

4.

仔细观察我们刚刚得出的这三个式子:

是不是挺有规律的?顺着规律写下去:

……

经验证,以上结果完全正确(好兴奋有木有)!

将此规律记为级数形式:

,其中
为正整数。

5f8b139fdbca883c5af6455acbd9dad6.png
补充:
用相同的思路,可得出此结论:


二、一堆和蔼可亲的级数(bushi)

1.

2.

3.

4.

5.

6.

7.

8.

9.

9d488b5a79bd09d33343235b19421440.png

下面开始计算:

1.

的无穷乘积展开开始:

两端取对数:

两端求导:

注意此时

的取值范围已被限制于

两端同乘

整理可得:

带入得:

到现在,我们可以计算封面中的这坨看着很恐怖的级数了。

式两端求导并同乘

然后两端减去

式:

而:

带入得:

2.

式中的
替换为

式相加:

注意到上式左端的级数在

时均为

所以:

于是我们得到:

带入得:

3.

式两端乘
并与
式相加:

而上式左端等于:

所以:

带入得:

分别代入
式并与
相加:

(计算过程太复杂,就直接放结果了 /捂脸)

注意到左端级数仅在

时不为零,所以:

故:

分别代入
式并与
相加:

而上式左端等于:

所以:

总结以上规律可得:

,其中
为正整数,

更一般的:

其中

为整数且

若令

,则

公式变为:

为了方便计算,我们还需要知道:

其中

显然

来个小小的应用:

此时

,直接带入公式:

是不是很可爱呢?

0ff64163c32f90786de98e17879af413.png

4.

式两端减去

,两端取极限:

式两侧同除
并积分:

在上式两端令

可求出:

所以:

上式两端令

可得:

5.

带入
式:

式相加:

而上式左端等于:

所以:

6.

式两端同乘
并与
式相加:

而上式左端等于:

所以:

分别代入
式并与
相加:

而上式左端等于:

所以:

分别代入
式并与
式相加:

上式左端等于:

所以:

总结以上规律可得:

其中

再来个小小的应用:

此时

,代入公式得:

7.

这个直接暴力算:

8.

式稍微改写一下:

解得:

9.

分开,分别求和:

非常神奇是不是?/手动滑稽

d98d2f4289442fa48358a13d9f258952.gif

★三、从复变角度求

,其中
为正整数

,构造
正方形围道:

0ad82740c96f96a2021bb37b25ae1b8a.png
N为正整数

它在全平面的奇点是

,其中
级极点。

下面计算留数:

考虑到展开式:

,其中
伯努利数

展开式的推导参见:

Aries:请问这四个展开式是怎么来的?​www.zhihu.com

可以得到:

所以:

带回原式得:

由留数定理:

,上式变为:

解得:

漂亮!

1dd58b915d77027531ed2a077983b5ba.png

另一种求法:

https://zhuanlan.zhihu.com/p/146930843​zhuanlan.zhihu.com
151d15c188600988eca6b4769f1a7f90.png

o(≧v≦)o

e09437f09948cf3d00faf3b5e27857bd.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值