
定义:
注:本文仅讨论未解析延拓(即仅为级数定义)的、实数范围内的黎曼Zeta函数。
它图像长这样:

可以看出:
本文分为三大部分:
- 第一部分:用最“笨”的方法求出
- 第二部分:逐一攻克17个级数,绝对刺激,注意总结技巧哦
- 第三部分:用留数大法推出
一、仅通过比较
眼熟吧。相信很多人都能用这个法子求出
1.
首先来看
这正是著名的巴塞尔问题。
比较
解得:
这个方法正是欧拉最初使用的。巴塞尔问题的解法很多,比如使用傅里叶级数。
我有篇文章写了用留数定理的方法,供参考:
https://zhuanlan.zhihu.com/p/143842181zhuanlan.zhihu.com
(本文后面出现的
2.
比较
解得:
3.
比较
解得:
4.
仔细观察我们刚刚得出的这三个式子:
是不是挺有规律的?顺着规律写下去:
……
经验证,以上结果完全正确(好兴奋有木有)!
将此规律记为级数形式:

补充:
用相同的思路,可得出此结论:
若![]()
设![]()
则![]()
二、一堆和蔼可亲的级数(bushi)
1.
2.
3.
4.
5.
6.
7.
8.
9.

下面开始计算:
1.
从
两端取对数:
两端求导:
注意此时
两端同乘
整理可得:
把
到现在,我们可以计算封面中的这坨看着很恐怖的级数了。
对
然后两端减去
而:
把
2.
把
将
注意到上式左端的级数在
所以:
于是我们得到:
把
3.
将
而上式左端等于:
所以:
把
把
(计算过程太复杂,就直接放结果了 /捂脸)
注意到左端级数仅在
故:
把
而上式左端等于:
所以:
总结以上规律可得:
更一般的:
其中
若令
公式变为:
为了方便计算,我们还需要知道:
其中
显然
来个小小的应用:
此时
是不是很可爱呢?

4.
在
令
在
在上式两端令
所以:
上式两端令
5.
把
将
而上式左端等于:
所以:
6.
将
而上式左端等于:
所以:
把
而上式左端等于:
所以:
把
上式左端等于:
所以:
总结以上规律可得:
其中
再来个小小的应用:
此时
7.
这个直接暴力算:
8.
将
解得:
9.
将
非常神奇是不是?/手动滑稽

★三、从复变角度求
令

它在全平面的奇点是
下面计算留数:
考虑到展开式:
展开式的推导参见:
Aries:请问这四个展开式是怎么来的?www.zhihu.com可以得到:
所以:
带回原式得:
由留数定理:
令
解得:
漂亮!

另一种求法:
https://zhuanlan.zhihu.com/p/146930843zhuanlan.zhihu.com
o(≧v≦)o
