3d模型多怎么优化_近似模型之响应面建模

db058cb91ef32a45adde2b24e7408822.png

近似模型方法是通过数学模型的方法逼近一组输入变量(独立变量)与输出变量(响应变量)的方法。

其中:是响应实际值,是响应近似值,为随机误差,服从标准正态分布。

基于近似模型进行优化设计的优势
  • 建立经验公式,获得输入输出之间的量化关系;
  • 减少耗时的仿真程序调用,提高优化效率(数量级的提升);
  • 对响应函数进行平滑处理,降低“数值噪音”,有利于更快的收敛到全局最优点。

表1近似建模算法

1b7853680527db90c1ae22fff93850d3.png

c48a48bf4bc62b2e415a2543ec4b6881.png
图1近似模型建模流程
响应面(RSM)模型

响应面方法是利用多项式函数拟合设计空间

优点:

  • 通过较少的试验在局部范围内比较精确的逼近函数关系,并用简单的代数表达式展现出来
  • 通过回归模型的选择,可以拟合复杂的响应关系,具有良好的鲁棒性
  • 数学理论基础充分扎实,系统性、实用性强,适用广泛
  • 缺点:
  • 不能保证响应面通过所有的样本点,因此存在一定的误差
  • 对于高度复杂的函数关系的逼近效果不如神经网络等方法

表2响应面阶数及样本需求

edb6ea7177e529215172aa33576cabfa.png

对于构造高阶响应面主要有一下两个问题:

  • 样本量将显著增加,此外普通的试验设计也将更遭;
  • 高阶响应面容易产生振动。
以一个简单的例子,简述响应面模型建模方法

A根据已有数据创建响应面模型

01 直接创建近似模型组件。

2dddc6220011f71d4f13baa099e48da7.png

02 选择响应面模型。

70c645a15c214938d71fe58463f71049.png

03 将原始数据[示例为.txt格式]导入。

eef2dce322e150fbe9f14dfefd6ad2f8.png

206232277d43ad19300c6845dc52cfb8.png

04 选择输入、输出数据。

6eaf863a59dac46cf48a38630b4be4a0.png

05 选择二阶响应面模型(若不知道模型阶次需尝试探索),Sequential Replacement方法(代价较小)。

8b03e5c95255f4b133406125dec86cfb.png

06 选择误差分析方法,独立数据(需额外独立的验证数据)或交叉验证。

6176d6e115310e9d12668a28c19789d4.png

07 保留近似模型系数,方便后续分析。

a42194dd99ebe8edbf5a1e36b669465a.png

08 初始化近似模型。

54dc2e1650538d04814d53deb7e94cc9.png

09 得到近似模型系数。近似模型为:

cdb42954193dcdc92465bf26391a9395.png

aed53b6fa9e9a24d12487ad14bb3ae1f.png

10 误差分析:

均方根误差:1.6E^-16

回归分析、残差分析、标准差分析等:

7c3b22227ef3350d605cfae35f29fdb4.png

上述误差分析展现了响应面近似模型极高的精度。

而实际上,用以建模的原始数据是由:

ff5764f14363d6095882ccb1e82856f5.png

生成。

1c6f4c47ddddb0881bf4db1ad0e0d28f.png
近似模型建好后,我们尝试求解z的最小值

直接选取NLPQLP算法

f49764eb27b516110046045a37f753ff.png

a8b77c9247d6048fd08856681a004865.png

ec4217260b0d7916f844abc3b2f783ae.png

当然为阐述响应面模型建模方法,该例子所使用模型非常简单,实际工程问题远比本例复杂,对于样本数据和模型阶次的选择也需要多次探索研究,方能获得可靠的具有较高精度的响应面模型。此外,样本数据可由DOE抽样产生。

[阅读原文]

近似模型之响应面建模

- END -

bf25a153a03029aba961d919699ff16c.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值