
近似模型方法是通过数学模型的方法逼近一组输入变量(独立变量)与输出变量(响应变量)的方法。
其中:是响应实际值,是响应近似值,为随机误差,服从标准正态分布。
基于近似模型进行优化设计的优势
- 建立经验公式,获得输入输出之间的量化关系;
- 减少耗时的仿真程序调用,提高优化效率(数量级的提升);
- 对响应函数进行平滑处理,降低“数值噪音”,有利于更快的收敛到全局最优点。
表1近似建模算法


响应面(RSM)模型
响应面方法是利用多项式函数拟合设计空间
优点:
- 通过较少的试验在局部范围内比较精确的逼近函数关系,并用简单的代数表达式展现出来
- 通过回归模型的选择,可以拟合复杂的响应关系,具有良好的鲁棒性
- 数学理论基础充分扎实,系统性、实用性强,适用广泛
- 缺点:
- 不能保证响应面通过所有的样本点,因此存在一定的误差
- 对于高度复杂的函数关系的逼近效果不如神经网络等方法
表2响应面阶数及样本需求

对于构造高阶响应面主要有一下两个问题:
- 样本量将显著增加,此外普通的试验设计也将更遭;
- 高阶响应面容易产生振动。
以一个简单的例子,简述响应面模型建模方法
A根据已有数据创建响应面模型
01 直接创建近似模型组件。

02 选择响应面模型。

03 将原始数据[示例为.txt格式]导入。


04 选择输入、输出数据。

05 选择二阶响应面模型(若不知道模型阶次需尝试探索),Sequential Replacement方法(代价较小)。

06 选择误差分析方法,独立数据(需额外独立的验证数据)或交叉验证。

07 保留近似模型系数,方便后续分析。

08 初始化近似模型。

09 得到近似模型系数。近似模型为:


10 误差分析:
均方根误差:1.6E^-16
回归分析、残差分析、标准差分析等:

上述误差分析展现了响应面近似模型极高的精度。
而实际上,用以建模的原始数据是由:

生成。

近似模型建好后,我们尝试求解z的最小值
直接选取NLPQLP算法



当然为阐述响应面模型建模方法,该例子所使用模型非常简单,实际工程问题远比本例复杂,对于样本数据和模型阶次的选择也需要多次探索研究,方能获得可靠的具有较高精度的响应面模型。此外,样本数据可由DOE抽样产生。
[阅读原文]
近似模型之响应面建模
- END -
