三维叉乘怎么算_圆锥曲线第三节:升降指标、点乘和叉乘

目录:质点:圆锥曲线题目的三维矢量解法

在前两章我们指出,只有在矢量和对偶矢量之间才有自然的点乘。现在,我们要定义矢量和矢量间的点乘,为此我们必须引入一些附加结构。我们要引入的附加结构,是一个对称可逆的(0,2)型张量。我们先来解释一下这几个名词。

张量

称为对称的,若
。比如说,如果在三维空间中,这一条件意味着

需要注意到,这一定义说的其实是张量在一个特定的基底

下分量的性质,而不是张量本身的性质。但是,可以证明,只要在一个基底下,张量
的分量是对称的,那么无论选哪个基底,它的分量都是对称的。因此,张量的对称性是张量本身的性质,而不仅仅是张量分量的性质。

可以通过张量

构造一个线性映射
,把矢量映射成对偶矢量:
。它的一个指标用来和矢量进行缩并,另一个指标用来给出对偶矢量的自由指标。

对于映射,我们可以讨论它是否存在逆映射

,使得
应当是一个线性映射,把对偶矢量映射成矢量,因此,它应该用一个(2,0)型张量
来表示。这样,
可以改写成分量式:
。因为它要对任意的B都成立,因此
作为一个(1,1)型张量,必定代表一个恒等映射。根据我们在第二章末尾的讨论,
。因此,对于已有的张量
,如果存在
使得
,则称它是可逆的,它的逆张量是

对称可逆张量

的重要之处在于,当我们有了它,就可以很自然地构造两个映射,一个把矢量映射成对偶矢量,一个把对偶矢量映射回矢量。因此,当我们在讨论矢量
时,相当于我们在讨论对偶矢量
;当我们在讨论对偶矢量
时,相当于我们在讨论矢量
。我们称这两个东西是互相对应的。既然我们每次都同时在讨论两个对应的东西,我们干脆说它们其实就是一个元素。因此,我们引入记号,
,以突出它们俩互相对应这一特点。直观地说,我们可以用这一个对称可逆张量对矢量的指标进行升降。

进一步推广之,我们可以用它对任意的指标进行升降。比如我们有一个张量

,我们可以让第二个指标上升:
.

作为例子,我们可以计算让

的指标上升会形成什么。我们先让第一个指标上升:
,得到的是恒等张量。让两个指标都上升:
,得到的是A的逆张量。出于这个原因,以后我们不再使用记号
,而是使用记号
来表示
的逆张量。

在矢量空间及其对偶空间中,如果我们选定了一个对称可逆张量

对指标进行升降,就把
称为这个矢量空间的
度规。度规两字,通俗地说就是尺子。这是由于,有了度规后可以定义两个矢量的点乘,矢量和自己点乘定义为长度的平方。因此,长度的概念是建立在度规的基础上的。度规一般用符号
表示。

关于(0,2)型(当然(2,0)型也有类似的性质)对称张量还有一个重要的性质。这个性质是,对于这样的张量

可以找到一个坐标系,使得它的分量
满足:如果
,那么
;如果
,则分量或者是+1,或者是-1,或者是0
。其中+1、-1、0的个数反映了张量本身的属性,称为张量的号差。 很明显,号差是
唯一不依赖于坐标系的性质
,因此它十分重要。比如,号差的一个性质是,
是可逆的当且仅当
的号差中一个0也没有

在以前,我们无法自然地定义两个矢量

的点乘。但是在现在,我们可以先让其中一个矢量,比如B,的指标下降,成为
,之后就可以让它们点乘了。具体的表达式是,
。现在可以看到,之所以我们要求度规是一个对称张量,目的是让点乘满足交换律:

矢量的模方定义为

。重要的是,我们不能确保矢量的模方是正数!任意矢量的模方的正负性,反映了度规本身的性质,这一性质可以用号差来描述。

对于任意非零矢量

,如果在某个坐标系下,
的对角分量全是+1,那么
也必定是正的,这时我们称
正定的。如果在某个坐标系下,
的对角分量全是-1,那么
也必定是负的,这时我们称
负定的。如果如果在某个坐标系下,
的对角分量有+1也有-1,那么
可能是正的,可能是负的,也可能是0,此时我们称
不定的。对于有+1、有0,但没有-1的情况,我们有时也把它叫做正定的,这个视具体情况而定。

如果一个度规是负定的,那么我们可以给它乘一个负号来让它变成正定的。因此,我们一般不讨论负定度规。

我们举一些具体的度规作为例子。

1.在某个特定的坐标系下,三维欧几里得空间中的度规分量可以写作

,其含义为
,其余分量都是0。这时
的模方是
,因此这个度规是正定的。请注意一点,这段话里的
和前文常用的
有明确的不同。前者仅仅在某些特定的坐标系下的分量为
且其余分量都是0;而对后者,可以证明,在任意坐标系下,它都具有相同的分量表达式。

2.狭义相对论的空间是四维闵氏时空,它的度规在某个特定参考系下的分量是

,其余分量都是0。这时
的模方是
,因此这个度规是不定的。

3.平面上的圆锥曲线可以处理为三维空间中的不定度规。这是后文的内容。

之前我们利用一个二阶对称可逆张量定义了n维空间中的点乘。接下来我们将用一个三阶反对称张量定义3维空间中的叉乘。注意,叉乘运算仅仅在三维空间中存在。

一个(0,3)型张量

(它的分量写作
)称为反对称的,若交换其中任意的两个指标后张量的值变为它的相反数。例如,
。我们对这个张量在某一个特定的坐标系下的分量定义了它的反对称性,但是可以证明,如果它在一个坐标系下的分量是反对称的,那么它在任意一个坐标系下的分量都是反对称的。因此,反对称是张量的性质,而不仅仅是张量的分量的性质。

由反对称性,如果三个指标中有两个指标是相等的,那么这个分量的值必定是0.比如, 交换

的前两个指标得到
,因此
。不为零的分量的指标必定使得1、2、3三个数各出现一次。我们可以设
,通过交换指标,可以得到
以及
。因此我们发现,
反对称的三阶张量的分量
几乎是完全确定的
,除了一个待定的系数a未知。而实际上,a的取值并不是特别重要,因为a的变化只不过是给这个张量乘上了一个常数。因此我们干脆选取
,称为“标准反对称张量”。
这一性质仅仅在部分参考系成立,如果在其他参考系下写下张量
的分量,会发现a并不是1.但是这通常是
无关紧要的。由于它实在是无关紧要,我们甚至可以说:
是三维空间自带的一个结构

要定义指标在上面的

,按理来说我们需要借助于一个度规。但是这里作为一个例外,我们采用另一种方式来定义这个张量:要求
满足
。这一要求可以唯一地确定
。这是因为反对称的三阶张量只有一个常数系数待定,而如果有一个
满足等式,给它乘以一个不等于1的常数必然不满足等式。因此
是唯一存在的。之所以等式右边的值是6,是因为我们希望当
是“标准反对称张量”时,
也是“标准反对称张量”。可以验证,
会使得这一等式成立。

关于

有一个极其重要的公式:

我们可以通过直接计算来验证这一公式。首先,如果j=k,那么左式由反对称性为0,很容易验证右式也为0。如果

,不失一般性,我们令
。那么左式中只有哑指标i取1时才是非零的。这时它的值为
。而右式成为了
。如果右式非零,m和n都不能等于1。在剩下的情况中,很容易验证右式和左式是相等的。

此外,这一公式也是有用的:

这一公式表明:在一个表达式中,可以“同时消掉两个

”来进行化简,最终使得
的个数为0个或者1个

借助于

,我们可以定义三维矢量的两种运算:叉乘和混合积。

两个矢量

的叉乘
是一个对偶矢量,定义为
。类似地,借助
可以定义两个对偶矢量的叉乘。

三个矢量

的混合积
是一个实数,定义为
,类似也可以定义三个对偶矢量的混合积。

我假设读者已经掌握了叉乘和混合积的许多基本性质,因此我略去不讲。我直接介绍二重外积公式:

。这一公式可以利用
来证明。请注意一点:这个公式中,
是矢量,而C是对偶矢量(当然,也可以互相交换)。只有存在度规时,才可以定义矢量和对偶矢量的叉乘。

利用二重外积公式,可以证明:

到目前为止,我们介绍了必备的一些数学知识,从下一章开始,我们要利用这些知识研究圆锥曲线。因此熟练掌握点乘、叉乘、混合积、指标缩并的运算是重要的。

目录:质点:圆锥曲线题目的三维矢量解法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值