matlab求傅里叶级数展开式_第七章无穷级数幂级数

记录一下挑战一个月的全力学习会有多么可怕。从6/23日起,当然复习全书会每天腾出时间去归纳总结直至所有题目全部标上黑色的标识!把所有红色标记通通消灭掉! 02085854f3afed14b543d1f811056db7.png

一、求幂级数的收敛域

温馨提示

据说,李永乐复习全书每道题都滚瓜烂熟,可以有120的潜力。那么,我们一定要加油掌握每一道题呀。

学习目标:

  1. 掌握知识点

  2. 掌握解题方法

  3. 做题,做题,做题!

知识点:

 

1.求幂级数收敛域的一般方法

先求收敛半径,再考虑收敛区间两个端点的敛散性。

那么如何求收敛半径呢?(与正项级数判敛的方法不同,这里需要加绝对值)

(1)比值法

(2)根值法

2.幂级数的运算性质

800a0c02c56d02cd1b474d603a31e74c.png

3.夹逼定理

(1)在*的去心邻域内g(x)<=f(x)<=h(x);

(2)

56876d668cf5f572197f4749b2cad665.png

注:夹逼定理对于数列也成立;A换成∞,定理也成立

4.阿贝尔定理:

1d6b8418cc492e860ed71a5b82359d5d.png

5.幂级数收敛中心怎么确定?

3181888c6df003409bd0c70a0a351fab.png的收敛中心就是a

6.若已知幂级数在x=b处条件收敛,则x=b为该幂级数收敛区间的一个端点

题目

 

30----1,2,3

31----4

32----1,5,6

02085854f3afed14b543d1f811056db7.png

二、将函数展开为幂级数

知识点:

 

1.将函数展开为幂级数常用的方法

(1)间接法

利用麦克劳林展开式,通过适当变形,利用幂级数性质(四则运算,逐项求导,逐项积分)将函数展开为幂级数

注意:如果是两个幂级数的加法和乘法运算,收敛区间取交集,而且必须要把收敛区间写出来,运算注意正负号,小心谨慎。

2.将函数在指定点处展开为幂级数是什么意思,怎么展开?

举个例子:

将f(x)=sinx在x=π/4处展开

eba5d827b2da19a9010d3bc84abfd045.png转换为展开为t的幂级数,最后把t换回x即可

3.两正两负的数列如何用(-1)的幂次方表示?

0aaa5178cac7fd8df2e5e015a0d28a82.png,记住吧,推导目前还不会。

4.幂级数的展开式是唯一的,可以通过这个来求在给定点的高阶导数。

题目

 

33----1

34----1,2,3

35----4

36----4

02085854f3afed14b543d1f811056db7.png

三、级数求和

知识点:

 

 1.常数项级数求和方法

(1)利用级数定义求部分和Sn,然后求极限得到级数和

(2)借助于幂级数的和函数

2.幂级数的求和方法

  利用常用的麦克劳林展开式及幂级数的性质(有理运算性质、逐项求导、逐项积分)

  解题步骤:

  (1)求出收敛域

  (2)求出S(x),和函数中x的取值范围先取开区间,再根据S(x)中不能取得点以及端点处是否左连续或右连续来确定。

    注:如果求S(x)中用到了逐项求导或逐项可积,则需要判断端点的情况。否则端点的闭合和收敛域是一样的。

  (3)若收敛域中的点没有取完,则需要补上。

3.arctanx的定义域和值域

(1)定义域:R。

(2)值域:(-π/2,π/2)。

          y=arctanx的函数图像如下:

617aa0360c4f475b1f4b51f882237da0.png

4.第二问肯定不会简单,所以认真看清条件,太简单肯定做错了。

5.常数项级数的证明题的方法在幂级数中同样也是适用的,第二问必定会用到题目中的条件或者第一问的结论。

回顾一下常数项级数中总结的:

  一般情况下,需要通过题目给出的方程,或第一问已知的条件对级数通项进行变形,然后再根据级数类型用相对应的判别法。全书中所给的例题有一半都要这样去做,同时比较判别法和级数的定义是证明题超喜欢考的。

题目

 

37----1.1

38----1.2,3

39----2

40----2

41----2

42----2,4

43----2,4,5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值