一、求幂级数的收敛域
温馨提示
据说,李永乐复习全书每道题都滚瓜烂熟,可以有120的潜力。那么,我们一定要加油掌握每一道题呀。
学习目标:
掌握知识点
掌握解题方法
做题,做题,做题!
知识点:
1.求幂级数收敛域的一般方法
先求收敛半径,再考虑收敛区间两个端点的敛散性。
那么如何求收敛半径呢?(与正项级数判敛的方法不同,这里需要加绝对值)
(1)比值法
(2)根值法
2.幂级数的运算性质
3.夹逼定理
设
(1)在*的去心邻域内g(x)<=f(x)<=h(x);
(2)
注:夹逼定理对于数列也成立;A换成∞,定理也成立
4.阿贝尔定理:
5.幂级数收敛中心怎么确定?
的收敛中心就是a
6.若已知幂级数在x=b处条件收敛,则x=b为该幂级数收敛区间的一个端点
题目
30----1,2,3
31----4
32----1,5,6
二、将函数展开为幂级数
知识点:
1.将函数展开为幂级数常用的方法
(1)间接法
利用麦克劳林展开式,通过适当变形,利用幂级数性质(四则运算,逐项求导,逐项积分)将函数展开为幂级数
注意:如果是两个幂级数的加法和乘法运算,收敛区间取交集,而且必须要把收敛区间写出来,运算注意正负号,小心谨慎。
2.将函数在指定点处展开为幂级数是什么意思,怎么展开?
举个例子:
将f(x)=sinx在x=π/4处展开
转换为展开为t的幂级数,最后把t换回x即可
3.两正两负的数列如何用(-1)的幂次方表示?
,记住吧,推导目前还不会。
4.幂级数的展开式是唯一的,可以通过这个来求在给定点的高阶导数。
题目
33----1
34----1,2,3
35----4
36----4
三、级数求和
知识点:
1.常数项级数求和方法
(1)利用级数定义求部分和Sn,然后求极限得到级数和
(2)借助于幂级数的和函数
2.幂级数的求和方法
利用常用的麦克劳林展开式及幂级数的性质(有理运算性质、逐项求导、逐项积分)
解题步骤:
(1)求出收敛域
(2)求出S(x),和函数中x的取值范围先取开区间,再根据S(x)中不能取得点以及端点处是否左连续或右连续来确定。
注:如果求S(x)中用到了逐项求导或逐项可积,则需要判断端点的情况。否则端点的闭合和收敛域是一样的。
(3)若收敛域中的点没有取完,则需要补上。
3.arctanx的定义域和值域
(1)定义域:R。
(2)值域:(-π/2,π/2)。
y=arctanx的函数图像如下:
4.第二问肯定不会简单,所以认真看清条件,太简单肯定做错了。
5.常数项级数的证明题的方法在幂级数中同样也是适用的,第二问必定会用到题目中的条件或者第一问的结论。
回顾一下常数项级数中总结的:
一般情况下,需要通过题目给出的方程,或第一问已知的条件对级数通项进行变形,然后再根据级数类型用相对应的判别法。全书中所给的例题有一半都要这样去做,同时比较判别法和级数的定义是证明题超喜欢考的。
题目
37----1.1
38----1.2,3
39----2
40----2
41----2
42----2,4
43----2,4,5