级数的收敛性与应用
1. 数列的和与级数
-
数列的和:数列是按一定规则排列的数的集合,级数则是数列的项相加的和。级数通常可以表示为:
S = a 1 + a 2 + a 3 + ⋯ S = a_1 + a_2 + a_3 + \cdots S=a1+a2+a3+⋯
如果级数的部分和(即前 n 项的和)趋于某个有限值,那么这个级数是收敛的;如果部分和无限大或没有极限,则级数发散。
-
收敛级数的定义:如果级数的部分和 S n S_n Sn 存在有限的极限 S S S,即:
lim n → ∞ S n = S \lim_{n \to \infty} S_n = S n→∞limSn=S
那么级数 S = ∑ n = 1 ∞ a n S = \sum_{n=1}^{\infty} a_n S=∑n=1∞an 收敛,且其和为 S S S。
-
级数的收敛性判别法:为了判断一个级数是否收敛,可以使用几种常见的判别法:
- 比较判别法:如果 0 ≤ a n ≤ b n 0 \leq a_n \leq b_n 0≤an≤bn 且级数 ∑ b n \sum b_n ∑bn 收敛,那么级数 ∑ a n \sum a_n ∑an 也收敛。
- 比值判别法:如果存在常数
L
L
L,使得
lim
n
→
∞
a
n
+
1
a
n
=
L
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L
limn→∞anan+1=L,则:
- 如果 L < 1 L < 1 L<1,级数收敛;
- 如果 L > 1 L > 1 L>1,级数发散;
- 如果 L = 1 L = 1 L=1,则需要进一步判断。
- 根判别法:如果存在常数
L
L
L,使得
lim
n
→
∞
∣
a
n
∣
n
=
L
\lim_{n \to \infty} \sqrt[n]{|a_n|} = L
limn→∞n∣an∣=L,则:
- 如果 L < 1 L < 1 L<1,级数收敛;
- 如果 L > 1 L > 1 L>1,级数发散;
- 如果 L = 1 L = 1 L=1,则需要进一步判断。
例子:判断级数 ∑ n = 1 ∞ 1 n 2 \sum_{n=1}^{\infty} \frac{1}{n^2} ∑n=1∞n21 是否收敛。
使用比较判别法,比较 1 n 2 \frac{1}{n^2} n21 和 1 n \frac{1}{n} n1,我们知道 ∑ 1 n 2 \sum \frac{1}{n^2} ∑n21 收敛,因此原级数也收敛。
2. 幂级数
-
幂级数:幂级数是具有形式 ∑ n = 0 ∞ a n ( x − c ) n \sum_{n=0}^{\infty} a_n (x - c)^n ∑n=0∞an(x−c)n 的级数,其中 a n a_n an 是常数, x x x 是变量, c c c 是幂级数的中心。
-
收敛半径:幂级数的收敛半径 R R R 是幂级数收敛的区间的半径。它决定了级数在什么范围内收敛。收敛半径 R R R 的计算公式为:
1 R = lim sup n → ∞ ∣ a n ∣ n \frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|a_n|} R1=n→∞limsupn∣an∣
如果 ∣ x − c ∣ < R |x - c| < R ∣x−c∣<R,则级数收敛;如果 ∣ x − c ∣ > R |x - c| > R ∣x−c∣>R,则级数发散;如果 ∣ x − c ∣ = R |x - c| = R ∣x−c∣=R,则需要进一步判断。
-
敛散性:幂级数的敛散性与其收敛半径密切相关。在收敛半径内,幂级数收敛,超出该半径时,级数发散。
3. 课堂活动设计
活动案例 1:讨论并解决不同类型的级数收敛性问题
- 给定级数 ∑ n = 1 ∞ 2 n n ! \sum_{n=1}^{\infty} \frac{2^n}{n!} ∑n=1∞n!2n,请学生使用比值判别法判断该级数的收敛性。
计算过程:
-
计算比值:
lim n → ∞ a n + 1 a n = lim n → ∞ 2 n + 1 ( n + 1 ) ! ⋅ n ! 2 n = lim n → ∞ 2 n + 1 = 0 \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} = \lim_{n \to \infty} \frac{2}{n+1} = 0 n→∞limanan+1=n→∞lim(n+1)!2n+1⋅2nn!=n→∞limn+12=0
-
由于比值的极限为 0,且 0 < 1 0 < 1 0<1,因此该级数收敛。
活动案例 2:学生尝试使用收敛判别法解决实际问题
- 给定级数 ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty} \frac{1}{n^p} ∑n=1∞np1,讨论该级数对于不同的 p p p 值的收敛性。
计算过程:
- 如果 p > 1 p > 1 p>1,则级数 ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty} \frac{1}{n^p} ∑n=1∞np1 收敛(通过比较判别法与已知的收敛级数比较)。
- 如果 p ≤ 1 p \leq 1 p≤1,则级数发散。
4. Python 实现示例
下面是一个 Python 示例,演示如何计算一个级数的收敛性,并绘制其部分和图像。
import numpy as np
import matplotlib.pyplot as plt
# 定义级数项
def series_term(n):
return 2**n / np.math.factorial(n)
# 计算级数的部分和
n_terms = 20
partial_sums = [sum(series_term(n) for n in range(i+1)) for i in range(n_terms)]
# 绘制部分和的图像
plt.plot(range(1, n_terms+1), partial_sums, label=r'$\sum_{n=1}^{\infty} \frac{2^n}{n!}$ 的部分和')
plt.axhline(y=partial_sums[-1], color='r', linestyle='--', label='极限值')
plt.title("级数 $\sum_{n=1}^{\infty} \\frac{2^n}{n!}$ 的部分和")
plt.xlabel("项数 n")
plt.ylabel("部分和")
plt.legend()
plt.grid(True)
plt.show()
该代码将绘制级数 ∑ n = 1 ∞ 2 n n ! \sum_{n=1}^{\infty} \frac{2^n}{n!} ∑n=1∞n!2n 的部分和图像,并展示它如何逐渐趋近于极限。
5. 总结
通过这节课的学习,学生将能够:
- 理解级数的定义和收敛性判别法。
- 学会使用比值判别法和根判别法来判断级数的收敛性。
- 掌握幂级数的收敛半径和敛散性分析。
- 通过实际问题和 Python 编程实现级数的收敛性计算和图像绘制。