td宽度自适应_动态环境下基于DRL的无人车自适应路径规划方法

41a2af037a4972354f1d1a0ce47eae37.png

目录

1. 前言
----1.1 知网链接 2. 主要研究内容 3. D3QN PER算法
----3.1 DQN算法
----3.2 Double DQN算法
----3.3 Dueling DQN算法
----3.4 优先经验回放 4. 环境特征融合方案
----4.1 自身状态信息处理方法
----4.2 激光雷达点云信息处理方法
----4.3 视觉图像信息处理方法
----4.4 环境特征融合方案 5. 实验环境
----5.1 仿真实验环境的搭建
----5.2 小车的动作空间划分
----5.3 算法参数设置
----5.4 奖励函数的设置 6. 效果展示
----6.1 无障碍环境
----6.2 静态障碍环境
----6.3 5个静态障碍+5个动态障碍环境
----6.4 10个动态障碍环境 7. 完整代码
----7.1 Software
----7.2 Installation
--------7.2.1 解决pointgrey_camera_driver编译不过的问题 8. 其他问题

1. 前言

b1b7e76958719a4a59cdc22f1f0782ae.png

初衷是,在环境不是完全已知的情况下,希望行星车具备一定的自适应能力,应对环境发生的变化。所以,基于深度强化学习(Deep Reinforcement Learning, DRL)理论提出了端到端的路径规划方法,直接从传感器信息映射出动作指令再发布给行星车。同时采用不同的神经网络结构分别处理不同的传感器信息,最后将环境特征融合在一起,构成基于D3QN PER的多传感器行星车路径规划方法。

  • 1.1 知网链接
动态环境下多传感器行星车自适应路径规划方法研究 - 中国知网​kns.cnki.net

2. 主要研究内容

主要研究内容如图:

cd0b7f49b718e8808890b867bdf0df8c.png

技术途径:

df687d0fc1d67bc2cdf15e0067eedbcd.png

3. D3QN PER算法

关于强化学习的一些基础知识,推荐大家去看专栏中关于David Silver课程的笔记:

搬砖的旺财:David Silver 增强学习——笔记合集(持续更新)​zhuanlan.zhihu.com
7810f8d218a7040493a0f897b14b5b3b.png
  • 3.1 DQN算法

f4e13a16ca2e1034750853a67806f177.png
2015版DQN

直接来看DQN的损失函数:

其中,

是目标Q网络,参数为
,负责生成训练过程中的目标,即目标Q值
是当前Q网络,参数为
;值得注意的是,
的网络结构完全一致。

每训练C步, 将当前Q网络的参数完全复制给目标Q网络,那么,接下来C步参数更新的目标将由更新后的目标Q网络负责提供。

具体的实施步骤请参见上图~

  • 3.2 Double DQN算法

173a3c7d0aa348d6719e0640f216979f.png

Double DQN算法主要是为了解决DQN算法中严重的过估计问题,它将目标Q值中动作的选择和动作的评估分开,让它们使用不同的Q网络。

先看Double DQN中的目标Q值:

当前Q网络负责选择动作,而带有“延迟效应”的目标Q网络用来计目标Q值,具体的实施步骤请参见上图~

  • 3.3 Dueling DQN算法

b38ccb369d21293b5236f2f15250df98.png

Dueling DQN相比于DQN在网络结构上做出了改进,在得到中间特征后“兵分两路”,一路预测状态值函数,另一路预测相对优势函数,两个相加才是最终的动作值函数。

  • 3.4 优先经验回放

在DQN中使用经验回放的动机是:作为有监督学习模型,深度神经网络要求数据满足独立同分布假设;但样本来源于连续帧,这与简单的RL问题相比样本的关联性增大了不少。 假如没有经验回放,算法在连续一段时间内基本朝着同一个方向做梯度下降,那么在同样的步长下这样直接计算梯度就有可能不收敛。所以经验回放的主要作用是:

克服经验数据的相关性,减少参数更新的方差;
克服非平稳分布问题。

经验回放的做法是从以往的状态转移(经验)中随机采样进行训练,如下图所示,这样操作使得数据利用率高,可以理解为同一个样本被多次使用。

f08a9dc363c34f2661cdebb1cc03d6df.png

优先经验回放(Prioritized Experience Replay, PER)的思路来源于优先清理(Prioritized sweeping),它以更高的频率回放对学习过程更有用的样本,这里使用TD-error来衡量作用的大小。TD-error的含义是某个动作的估计价值与当前值函数输出的价值之差。TD-error越大,则说明当前值函数的输出越不准确,换而言之,能从该样本中“学到更多”。 为了保证TD-error暂时未知的新样本至少被回放一次,将它放在首位,此后,每次都回放TD-error最大的样本。

不过,单独使用TD-error进行PER也存在许多问题。首先,只有被重放样本的TD-error被更新,那么,TD-error较小的样本在第一次被回放后,由于不更新, 它的TD-error会一直被认为很小(其实参数更新后该样本的TD-error可能会变大), 所以该样本很久都不会再重新被回放。再者,对噪声敏感,bootstrapping会进一步加剧这个问题。最后,PER的样本会集中在一个小范围内,多样性的缺失容易导致过拟合。

为了解决上述问题,结合纯粹的贪婪优先和均匀随机采样。确保样本的优先级正比于TD-error,与此同时,确保最低优先级的概率也是非零的。

首先,定义采样经验

的概率为:

其中,

是第
个经验的优先级;指数
决定使用优先级的多少,当
时是均匀随机采样的情况。

具体的,采用成比例的优先(Proportional prioritization),即

其中,

为 TD-error;
是为了防止经验的TD-error为0后不再被回放。在实现时采用二叉树(Sum tree)结构,它的每个叶子节点保存了经验的优先级,父节点存储了叶子节点值的和。这样,头节点的值就是所有叶子结点的总和。采样一个大小为
的minibatch时,范围
被均分为
个小范围,每个小范围均匀采样,这样,各种经验都有可能被采样到。

为了消除由采样带来的偏差,加入重要性采样(Importance-sampling)。重要性采样权重为

。其中,
用于调节偏差程度,因为在学习的初始阶段有偏差是无所谓的,但在后期就要消除偏差。为了归一化重要性采样权重,使

来看一下PER和Double DQN结合后的伪代码:

fe174af393063bf358800a570b08e4d4.png

4. 环境特征融合方案

  • 4.1 自身状态信息处理方法

0b141f2c9f302decd5008127dab23b8c.png

自身状态信息的表示方法请参见上图,它可以表示为一个数组

,其中,
时刻小车的速度和角速度信息,
时刻小车相对终点的距离和角度信息。自身状态信息时刻指引着小车向终点移动。
  • 4.2 激光雷达点云信息处理方法

LIDAR产生的点云属于长序列信息,比较难直接拆分成一个个独立的样本来通过CNN进行训练。所以采用LSTM网络来处理LIDAR点云信息,其中cell单元为512个,具体的网络结构如下图所示:

9f44b95d65832a29812051bb676bec4e.png

为了方便,控制LIDAR输出的点云信息为360维,更新频率是50赫兹,探测范围为

,探测距离为
,单位是米,如下图所示:

a63c1b40a4ef5664c274d18274bb3f36.png
  • 4.3 视觉图像信息处理方法

尽管LIDAR擅长测量障碍物的距离和形状,但它实际上并不能用于确定障碍物的类型。计算机视觉可通过分类来完成这项任务, 即给定相机的图像,可以标记图像中的对象。

本文采用CNN处视觉图像信息。输入图像

经过预处理和叠帧(4 帧)后变为
的单通道灰色图。

4a2ed9bf3a3c43ec45e7c3e8feecb0b0.png
原始图像和经过预处理后的图像

这里共采用了三个卷积层,它们分别是 conv1、conv2 和 conv3,具体参数如下:

v2-00535e21178c802a2ef87cc624da9fdc_b.png

卷积层的输入输出示意图如下:

51ed739c5b92b7eb8c3aeb4fd0032156.png
  • 4.4 环境特征融合方案

6f8b5d914e5d52812d6778dcdb439143.png

13a6f80f12545fac86a58743809aaff6.png

5. 实验环境

  • 5.1 仿真实验环境的搭建

基于ROS及Gazebo搭建的仿真实验环境的框架如图所示:

fd119991b266beca69342d8542d6e2de.png

基于此,可以改变Gazebo中的仿真环境,例如加入不同的障碍,也可以改变小车搭载的传感器。

关于如何使Gazebo的仿真速度加快 10 倍,请参考:

搬砖的旺财:将Gazebo的仿真速度加快10倍!!!​zhuanlan.zhihu.com
  • 5.2 小车的动作空间划分

86960978379817926735a5a6497cf7f3.png
  • 5.3 算法参数设置

1f4f0b5ed446c15af8f41370ba5464f9.png

-贪婪法的
参数从初始值1.0开始按照训练步数线性下降

很有意思的一件事情,经过测试发现,记忆池的大小和训练步数保持10倍的关系是最好的~

d665a223f9eaa631be861d85c535d933.png

参数按照训练步数线性下降:
  • 5.4 奖励函数的设置

5505dd72531af636482e1fcab5da487d.png

6. 效果展示

  • 6.1 无障碍环境
f884c8eb059add8f25e59f2c2cc7c089.png
https://www.zhihu.com/video/1149116716616343552
  • 6.2 静态障碍环境
5aaed7036e6da04c7ba5b0d05c0bc12b.png
https://www.zhihu.com/video/1149115954708570112
  • 6.3 5个静态障碍+5个动态障碍环境
349fef72014c68e9f86a52eac88eec77.png
https://www.zhihu.com/video/1149116257617014784
  • 6.4 10个动态障碍环境
3bdbd344a07ac2476072a5fba919befa.png
https://www.zhihu.com/video/1149115291945521152
82f523046631845f25f80ef875ca07e2.png
https://www.zhihu.com/video/1149115841218990080

7. 完整代码

请点击:CoderWangcai/DRL_Path_Planning

  • 7.1 Software
Ubuntu 16.04
ROS Kinect
Python 2.7.12
Tensorflow 1.12.0
  • 7.2 Installation
git clone https:// github.com/CoderWangcai /DRL_Path_Planning.git (PS:这一步请耐心等待,训练好的model比较大~)
cd DRL_Path_Planning
catkin_make
source devel/setup.bash
roslaunch multi_jackal_tutorials ten_jackal_laser_add_apriltag.launch

出现的便是下面的场景:

e3931ed112be3ca1a084ee94e1c0e037.png

然后,把DRL_Path_Planning/src/tf_pkg/scripts/D3QN_PER_image_add_sensor_dynamic_10obstacle_world_30m_test.py中的路径补充完整:

# 静态障碍下训练好的模型
self.load_path = '.../jackal/src/tf_pkg/scripts/saved_networks/10_D3QN_PER_image_add_sensor_obstacle_world_30m_2_2019_06_02'

(PS:如果需要运行其他python文件,也请将其中的路径补充完整~)

另起一个终端:

python D3QN_PER_image_add_sensor_dynamic_10obstacle_world_30m_test.py

搞定啦,出现的便是训练好的10个动态障碍环境~

  • 7.2.1 解决pointgrey_camera_driver编译不过的问题

catkin_make可能会遇到关于pointgrey_camera_driver的问题:

603080537e9f8d0c8dc488c6454a88f5.png

解决方法如下:

cd src/
git clone https:// github.com/ros-drivers/ pointgrey_camera_driver
cd ..
catkin_make

25430df8b1fb062870fb819a8e844a9a.png

编译到上面这里的时候卡住了,没关系,ctrl+c,然后把刚刚Download的pointgrey_camera_driver文件夹删除,因为现在已经生成相关的消息了,它不起作用了。

catkin_make

没问题啦,整个文件夹都编译过了~


8. 其他问题

如有问题请提issue~


特别鸣谢YP师兄,师兄在整个毕设的过程中,给了我很多技术上的支持,最后也帮我反复修改论文的结构~

请大家批评指正,谢谢~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值