spark 查看yarn日志_Spark(二)

本文详细介绍了Spark在Standalone和Yarn模式下的任务提交方式,包括client和cluster模式的区别,以及这两种模式下的执行流程。同时,文章还提到了Spark任务执行中的关键概念,如Driver、Executor和ApplicationMaster,以及资源调度和任务调度的流程。
摘要由CSDN通过智能技术生成

一、Spark任务执行

上一篇有提到Spark任务的运行模式包括StandaloneYarn,这里谈谈两种模式的区别。

1.1、Standalone模式(两种提交)

1.1.1、Standalone-client提交任务方式

提交命令:

./spark-submit --master spark://node1:7077 --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.2.1.jar 1000

./spark-submit --master spark://node1:7077 --deploy-mode client --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.2.1.jar 100

执行原理图解:

9191445efc6369262fdf21e0d9a90d95.png

执行流程:

1、client模式提交任务后,会在客户端启动Driver进程。

2、Driver会向Master申请启动Application启动的资源。

3、资源申请成功,Driver端将task发送到worker端执行。

4、Worker端将task执行结果返回到Driver端。

总结:

client模式适用于测试调试程序。Driver进程是在客户端启动的,这里的客户端就是指提交应用程序的当前节点。这里的客户端就是指提交应用程序的当前节点。

在Driver端可以看到task执行的情况。生产环境下不能使用client模式,原因是:假设要提交100个application到集群运行,Driver每次都会在client端启动,那么就会导致客户端100次网卡流量暴增的问题。

1.1.2、Standalone-cluster提交任务方式

提交命令:

./spark-submit --master spark://node1:7077 --deploy-mode cluster --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.2.1.jar 100

注意:Standalone-cluster提交方式,应用程序使用的所有jar包和文件,必须保证所有的worker节点都要有,因为此种方式,spark不会自动上传包。

解决方式:

①将所有的依赖包和文件打到同一个包中,然后放在hdfs上。

②将所有的依赖包和文件各放一份在worker节点上。

执行原理图:

53125c87d90f0d22eac2be0b1e4c1b49.png

执行流程:

1、cluster模式提交应用程序后,会向Master请求启动Driver。

2、Master接受请求,随机在集群一台节点启动Driver进程。

3、Driver启动后为当前的应用程序申请资源。

4、Driver端发送task到worker节点上执行。

5、worker将执行情况和执行结果返回给Driver端。

总结:

Driver进程是在集群某一台worker上启动的,在客户端是无法查看task的执行情况的。假设要提交100个application到集群运行,每次Driver会随机在集群中某一台Worker上启动,那么这100次网卡流量暴增的问题就散布在集群上。

Standalone两种方式提交任务,Driver与集群的通信包括:

1、Driver负责应用程序资源的申请

2、任务的分发。

3、结果的回收

4、监控task执行情况。

1.2、Yarn模式(两种提交)

1.2.1、yarn-client提交任务方式

提交命令:

./spark-submit --master yarn --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.2.1.jar 100

./spark-submit --master yarn–client --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.2.1.jar 100

./spark-submit --master yarn --deploy-mode client --class org.apache.spark.examples.SparkPi

../examples/jars/spark-examples_2.11-2.2.1.jar 100

执行原理图:

75ff891edf05eb17a8443f6477448e2e.png

执行流程:

1、客户端提交一个Application,在客户端启动一个Driver进程。

2、应用程序启动后会向RS(ResourceManager)发送请求,启动AM(ApplicationMaster)的资源。

3、 RS收到请求,随机选择一台NM(NodeManager)启动AM。这里的NM相当于Standalone中的Worker节点。

4、AM启动后,会向RS请求一批container资源,用于启动Executor。

5、RS会找到一批NM返回给AM,用于启动Executor。

6、AM会向NM发送命令启动Executor。

7、Executor启动后,会反向注册给Driver,Driver发送task到Executor,执行情况和结果返回给Driver端。

总结:

Yarn-client模式同样是适用于测试,因为Driver运行在本地,Driver会与yarn集群中的Executor进行大量的通信,会造成客户机网卡流量的大量增加.

ApplicationMaster的作用:

1、为当前的Application申请资源

2、给NodeManager发送消息启动Executor。

注意:ApplicationMaster有launchExecutor和申请资源的功能,并没有作业调度的功能。

1.2.2、yarn-cluster提交任务方式

提交命令:

./spark-submit --master yarn --deploy-mode cluster --class org.apache.spark.examples.SparkPi

../examples/jars/spark-examples_2.11-2.2.1.jar 100

./spark-submit --master yarn-cluster --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.2.1.jar 100

执行原理图:

d78ab741739174bca22a9ddc954cd40a.png

执行流程:

①客户机提交Application应用程序,发送请求到RS(ResourceManager),请求启动AM(ApplicationMaster)。

②RS收到请求后随机在一台NM(NodeManager)上启动AM(相当于Driver端)。

③AM启动,AM发送请求到RS,请求一批container用于启动Excutor。

④RS返回一批NM节点给AM。

⑤AM连接到NM,发送请求到NM启动Excutor。

⑥Excutor反向注册到AM所在的节点的Driver。Driver发送task到Excutor。

总结:

Yarn-Cluster主要用于生产环境中,因为Driver运行在Yarn集群中某一台nodeManager中,每次提交任务的Driver所在的机器都是随机的,不会产生某一台机器网卡流量激增的现象,缺点是任务提交后不能看到日志。只能通过yarn查看日志。

ApplicationMaster的作用:

1、为当前的Application申请资源

2、给NodeManger发送消息启动Excutor。

3、任务调度。

停止集群任务命令:yarn application -kill applicationID

二、补充部分算子

2.1、transformation

1、join,leftOuterJoin,rightOuterJoin,fullOuterJoin

作用在K,V格式的RDD上。根据K进行连接,对(K,V)join(K,W)返回(K,(V,W))

¬ join后的分区数与父RDD分区数多的那一个相同。

2、union

合并两个数据集。两个数据集的类型要一致。

¬ 返回新的RDD的分区数是合并RDD分区数的总和。

3、intersection

取两个数据集的交集

4、subtract

取两个数据集的差集

5、mapPartition

与map类似,遍历的单位是每个partition上的数据。

6、distinct(map+reduceByKey+map)

7、cogroup

当调用类型(K,V)和(K,W)的数据上时,返回一个数据集(K,(Iterable,Iterable))

2.2、action

foreachPartition

遍历的数据是每个partition的数据。

三、术语解释

f354bddd3101f3e6c73311d5ce55ec09.png

四、窄依赖和宽依赖

RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖。

窄依赖

父RDD和子RDD partition之间的关系是一对一或者多对一,不会有shuffle的产生。

宽依赖

父RDD与子RDD partition之间的关系是一对多。会有shuffle的产生。

宽窄依赖图理解

455f819b901685ae48f7fcaa2951722e.png

五、Stage

Spark任务会根据RDD之间的依赖关系,形成一个DAG有向无环图,DAG会提交给DAGScheduler,DAGScheduler会把DAG划分相互依赖的多个stage,划分stage的依据就是RDD之间的宽窄依赖。遇到宽依赖就划分stage,每个stage包含一个或多个task任务。然后将这些task以taskSet的形式提交给TaskScheduler运行。

stage是由一组并行的task组成。

stage切割规则:

切割规则:从后往前,遇到宽依赖就切割stage。

b89b159c83598bb8605823251f8a2c2f.png

stage计算模式:

pipeline管道计算模式,pipeline只是一种计算思想,模式。

0e64e136ef6da8ccef3795b95ebe71fd.png

数据一直在管道里面什么时候数据会落地?

①对RDD进行持久化。

②shuffle write的时候。

Stage的task并行度是由stage的最后一个RDD的分区数来决定的 。

如何改变RDD的分区数?

例如:reduceByKey(XXX,3),GroupByKey(4)

测试验证pipeline计算模式:

val conf = new SparkConf()
    conf.setMaster("local").setAppName("pipeline");
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(Array(1,2,3,4))
    val rdd1 = rdd.map { x => {
      println("map--------"+x)
      x
    }}
    val rdd2 = rdd1.filter { x => {
      println("fliter********"+x)
      true
    } }
    rdd2.collect()
    sc.stop()

六、Spark资源调度和任务调度

9af911ef72a76507feed8bfb0b511260.png

6.1、Spark资源调度和任务调度的流程

启动集群后,Worker节点会向Master节点汇报资源情况,Master掌握了集群资源情况。当Spark提交一个Application后,根据RDD之间的依赖关系将Application形成一个DAG有向无环图。任务提交后,Spark会在Driver端创建两个对象:DAGScheduler和TaskScheduler,DAGScheduler是任务调度的高层调度器,是一个对象。DAGScheduler的主要作用就是将DAG根据RDD之间的宽窄依赖关系划分为一个个的Stage,然后将这些Stage以TaskSet的形式提交给TaskScheduler(TaskScheduler是任务调度的低层调度器,这里TaskSet其实就是一个集合,里面封装的就是一个个的task任务,也就是stage中的并行度task任务),TaskSchedule会遍历TaskSet集合,拿到每个task后会将task发送到计算节点Executor中去执行(其实就是发送到Executor中的线程池ThreadPool去执行)。task在Executor线程池中的运行情况会向TaskScheduler反馈,当task执行失败时,则由TaskScheduler负责重试,将task重新发送给Executor去执行,默认重试3次。如果重试3次依然失败,那么这个task所在的stage就失败了。stage失败了则由DAGScheduler来负责重试,重新发送TaskSet到TaskSchdeuler,Stage默认重试4次。如果重试4次以后依然失败,那么这个job就失败了。job失败了,Application就失败了。

TaskScheduler不仅能重试失败的task,还会重试straggling(落后,缓慢)task(也就是执行速度比其他task慢太多的task)。如果有运行缓慢的task那么TaskScheduler会启动一个新的task来与这个运行缓慢的task执行相同的处理逻辑。两个task哪个先执行完,就以哪个task的执行结果为准。这就是Spark的推测执行机制。在Spark中推测执行默认是关闭的。

推测执行可以通过spark.speculation属性来配置。

注意:

对于ETL类型要入数据库的业务要关闭推测执行机制,这样就不会有重复的数据入库。

如果遇到数据倾斜的情况,开启推测执行则有可能导致一直会有task重新启动处理相同的逻辑,任务可能一直处于处理不完的状态。

6.2、图解Spark资源调度和任务调度的流程

8b79216eed8e6f1b485ec079d911e443.png

6.3、粗粒度资源申请和细粒度资源申请

6.3.1、粗粒度资源申请(Spark)

在Application执行之前,将所有的资源申请完毕,当资源申请成功后,才会进行任务的调度,当所有的task执行完成后,才会释放这部分资源

优点:

在Application执行之前,所有的资源都申请完毕,每一个task直接使用资源就可以了,不需要task在执行前自己去申请资源,task启动就快了,task执行快了,stage执行就快了,job就快了,application执行就快了。

缺点:直到最后一个task执行完成才会释放资源,集群的资源无法充分利用。

6.3.2、细粒度资源申请(MR)

Application执行之前不需要先去申请资源,而是直接执行,让job中的每一个task在执行前自己去申请资源,task执行完成就释放资源。

优点:集群的资源可以充分利用。

缺点:task自己去申请资源,task启动变慢,Application的运行就响应的变慢了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值