rostcm6情感分析案例分析_用python实现文本情感分析

本文介绍了一种基于rostCM6的情感分析方法,通过分析情感词、程度词、感叹号、否定词来确定文本的情感倾向。具体步骤包括查找情感词、考虑程度词和否定词的影响、处理感叹号以及按分句计算情感值。文章提供了实战代码和运行结果,展示如何对评论数据进行情感分析,以判断其积极或消极情绪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

53245687593af2464e829467d974d974.png

53245687593af2464e829467d974d974.png

8e5ecfbc4c0ea5cfc3c5e7788743aa01.png

现场课程:


连享会-Python爬虫与文本分析现场班

空间计量专题研讨班-连享会(2019年6月)

情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪。

原理

比如这么一句话:“这手机的画面极好,操作也比较流畅。不过拍照真的太烂了!系统也不好。”

① 情感词

要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等。

出现一个积极词就+1,出现一个消极词就-1。
里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词。那它的情感分值就是1+1-1+1=2. 很明显这个分值是不合理的,下面一步步修改它。

② 程度词

“好”,“流畅”和‘烂“前面都有一个程度修饰词。”极好“就比”较好“或者”好“的情感更强,”太烂“也比”有点烂“情感强得多。所以需要在找到情感词后往前找一下有没有程度修饰,并给不同的程度一个权值。比如”极“,”无比“,”太“就要把情感分值4,”较“,”还算“就情感分值2,”只算“,”仅仅“这些就0.5了。那么这句话的情感分值就是:41+12-14+1=3。

③ 感叹号

可以发现太烂了后面有感叹号,叹号意味着情感强烈。因此发现叹号可以为情感值+2. 那么这句话的情感分值就变成了:41+12-1*4-2+1 = 1

④ 否定词

明眼人一眼就看出最后面那个”好“并不是表示”好“,因为前面还有一个”不“字。所以在找到情感词的时候,需要往前找否定词。比如”不“,”不能“这些词。而且还要数这些否定词出现的次数,如果是单数,情感分值就-1,但如果是偶数,那情感就没有反转,还是1。在这句话里面,可以看出”好“前面只有一个”不“,所以”好“的情感值应该反转,-1。
因此这句话的准确情感分值是:41+12-14-2+1*-1 = -1

⑤ 积极和消极分开来

再接下来,很明显就可以看出,这句话里面有褒有贬,不能用一个分值来表示它的情感倾向。而且这个权值的设置也会影响最终的情感分值,敏感度太高了。因此对这句话的最终的正确的处理,是得出这句话的一个积极分值,一个消极分值(这样消极分值也是正数,无需使用负数了)。它们同时代表了这句话的情感倾向。所以这句评论应该是”积极分值:6,消极分值:7。

⑥ 以分句的情感为基础

再仔细一步,详细一点,一条评论的情感分值是由不同的分句加起来的,因此要得到一条评论的情感分值,就要先计算出评论中每个句子的情感分值。这条例子评论有四个分句,因此其结构如下([积极分值, 消极分值]):[[4, 0], [2, 0], [0, 6], [0, 1]] 。
以上就是使用情感词典来进行情感分析的主要流程了,算法的设计也会按照这个思路来实现。

算法设计

第一步:读取评论数据,对评论进行分句。
第二步:查找对分句的情感词,记录积极还是消极,以及位置。
第三步:往情感词前查找程度词,找到就停止搜寻。为程度词设权值,乘以情感值。
第四步:往情感词前查找否定词,找完全部否定词,若数量为奇数,乘以-1,若为偶数,乘以1。
第五步:判断分句结尾是否有感叹号,有叹号则往前寻找情感词,有则相应的情感值+2。第六步:计算完一条评论所有分句的情感值,用数组(list)记录起来。
第七步:计算并记录所有评论的情感值。
第八步:通过分句计算每条评论的积极情感均值,消极情感均值,积极情感方差,消极情感方差。

实战

这里是作者参考已有代码,结合自己需要,对代码进行了简单的修改。本脚本运行环境是python3.5 ,使用2.x的盆友们见谅。

2ce27b40e7949a493dc85a925faf4638.png

b39754f126caff57defc239657e33182.png

9264e5ba7f44a3efda0981908eef89a1.png

41dc7dbc77bb54973c854c429461d9d4.png

25cd81eaba13a2057af61455c03bd6af.png

ff7d748e8aeb37f5e811578ff73ef438.png

24d53a2bee75563594288e89cfe30fb7.png

1f07aaacec989fef4aa28b98f626f76a.png

712c1284862cf6c03cc969a50d1e9e3b.png

0b06d5024b87174518bbd70523b3bdbd.png

运行结果:

[[78.0, 169.0, 3.1, 6.8, 3.1, 6.5]]
[[327.0, 30.0, 14.9, 1.4, 22.5, 0.9]]

从得分我们看到第一段话是消极的,第二段是积极的。(主要看Pos与Neg大小)

运行代码及词典下载链接:

http://link.zhihu.com/?target=https%3A//pan.baidu.com/s/1jIRoOxK
密码:6wq4
由于微信公众号不支持外部链接,此链接只能复制上从浏览器打开。下载完代码,一定要注意代码中的path,修改成泥电脑中的文件路径,否则没法用。


特别说明:本文转载自知乎专栏,作者大邓,哈尔滨工业大学 管理科学与工程博士在读。可点击左下角查看原文。


e9fa53626c4d421d6059540546d1cc5f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值