kronecker引理证明_连续型Kronecker引理

连续型Kronecker引理

梁亦孔

【摘 要】摘要: Kronecker引理常用于证明概率论中大数定理,它是离散的情形.结合广义洛必塔法

则,得到连续型Kronecker引理的雏形.然后将条件进一步放宽,得到更一般化的连续型Kronecker引理

,并用得到的引理证明了与广义积分有关的一些极限性质.

【期刊名称】《上海工程技术大学学报》

【年(卷),期】2019(033)003

【总页数】4

【关键词】 Kronecker引理; 广义洛必塔法则; 广义积分

大数定理是概率论的重要内容之一,涉及大数定律的一些定理,常用Kronecker引理加以证明[1-2].该

引理应用广泛,一些学者对该引理加以研究和推广[3],但多数研究只涉及离散的情形,本文对连续型的

Kronecker 引理进行了探讨.

1 连续型的Kronecker引理

Kronecker引理[1] 设{xk}为实数列,{bk}为递增趋于+∞的正数列,若∑(xj/bj)收敛,则

广义洛必塔法则[4] 设f(x)和g(x)分别为定义在[a,+∞)的函数,且满足

2) f(x),g(x)在[a,+∞)上可导,g′(x)≠0;

(A为有限实数),

那么

推广的积分第一中值定理[5] 设f(x)和g(x)在闭区间[a,b]上连续,且g(x)在[a,b]上不变号,则在[a,b]上至

少存在一点ξ,使得

定理1 函数f(x)在区间[a,+∞)上连续,函数g(x)在区间[a,+∞)上可导,且若广义积分收敛,则

定理1是连续型Kronecker引理的雏形.

证明 令则收敛.由于函数f(x)和g(x)在区间[a,+∞)上均为连续的,所以即f(x)=h′(x)g(x),有

(1)

该定理的证明中要用到广义洛必塔法则,所以要求函数g(x)在区间[a,+∞)上满足g′(x)≠0,这个条件有

点高,如果这个条件去掉,即g′(x)=0时,广义洛必塔法则不能用,此时可以证明,如果g′(x)不变号,定理成

立.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值