python 累积正态分布函数_最接近神的数学公式—正态分布

本文介绍了正态分布的概念,强调其在数据科学中的重要性。正态分布,又称高斯分布,因其简单易理解而广泛使用。通过Python展示了如何查看特征的分布,并讨论了正态分布的特性,如均值、标准差和3σ原则。还介绍了如何通过各种变换方法将数据转换为正态分布,以适应统计分析和机器学习模型的需求。
摘要由CSDN通过智能技术生成
0c2588c450da4b2c3ded4c52229b469e.gif关注数学,关注AI,关注我们公众号ID:Math-AI 76470321ea8d8ab3dbb462209ea90303.png 0c2588c450da4b2c3ded4c52229b469e.gif d1880da86a2b6f6b795cf42a3738d2ce.gif 86ee3aac7d117945d700b23944716f4b.png 我们从高中就开始学正态分布,现在做数据分析、机器学习还是离不开它,那你有没有想过正态分布有什么特别之处?为什么那么多关于数据科学和机器学习的文章都围绕正态分布展开?本文作者专门写了一篇文章,试着用易于理解的方式阐明正态分布的概念。 机器学习的世界是以概率分布为中心的,而概率分布的核心是正态分布。本文说明了什么是正态分布,以及为什么正态分布的使用如此广泛,尤其是对数据科学家和机器学习专家来说。 我会从最基础的内容开始解释,以便读者们理解为什么正态分布如此重要。 文章结构如下:
  • 什么是概率分布?
  • 什么是正态分布?
  • 为什么变量如此青睐正态分布
  • 如何用 Python 查看查看特征的分布?
  • 其它分布变一变也能近似正态分布

9955871ab3ff49056b282ba7539d8312.png

Unsplash,由 timJ 发布。

先让我们来看一点背景知识:

1. 首先,要注意的最重要的一点是,正态分布也被称为高斯分布。

2. 它是以天才卡尔·弗里德里希·高斯(Carl Fried

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值