二元隐函数求二阶偏导_二元隐函数的二阶偏导数的计算方法

张辉 陈春梅 景慧丽

8437288a1cd436083a516b81fc259a19.png

a20c9af0096f3f2a0c960eb26219919a.png

摘  要:多元隐函授的求导问题是高等数学多元函数微分学的重要内容。该文介绍了計算由一个方程所确定的二元隐函数的二阶偏导数的4种方法,旨在对隐函数的偏导数问题有更深的理解和掌握。

关键词:隐函数  偏导数  链式法则  微分法

中图分类号:O13    文献标识码:A 文章编号:1672-3791(2020)01(b)-0222-02

多元隐函数的求导问题是高等数学多元函数微分学的重要内容。隐函数存在定理2[1]提供了由一个方程所确定的二元隐函数的偏导数的计算公式,假设三元函数F(x,y,z)具有二阶连续偏导数,在一定条件[1]下,方程F(x,y,z)=0唯一确定一个具有连续偏导数的二元函数z=f(x,y),且有而对于z=f(x,y)二阶偏导数的计算,教材上并没有给出求解方法和公式,同时也是大部分大学一年级学生面临的一个难点问题。为了解决上述问题,该文主要介绍4种计算此二元隐函数z=f(x,y)二阶偏导数的方法,给出相应的求解思路和计算公式,供初学者参考学习。

从以上4种方法的分析可以看出,微分法在求二元隐函数的二阶偏导数问题中有着显著优点,它比链式法则和偏导数求导法则要方便一些;特别是在变量间的关系较复杂时,微分法无须判断各变量之间的内在关系,只需将各变量一律看作成相互独立的自变量,再对等式两边的表达式同时求解微分或全微分,这样既简化了问题,也不容易出错。事实上,在大学数学课程的学习中,对于同一个具体问题,如果从不同的角度去分析,采用不同的处理方式或途径去解决就能得到不同的求解方法,通过比较可以选择便捷高效的方法,并在不断的分析比较中,使得学生将所学知识融会贯通、熟练掌握。

参考文献

[1] 同济大学数学系.高等数学(下册)[M].7版.北京:高等教育出版社,2014.

[2] 陈纪修,於崇华,金路.数学分析(下册)[M].2版.北京:高等教育出版社,2004.

相关推荐

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论

打赏作者

weixin_39815329

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值