numpy 拼接_numpy回顾小结(二)

7f413111617f9eb83f698e0de46927d7.png

上一篇:

橘猫吃不胖:numpy回顾小结(一)​zhuanlan.zhihu.com
35550e4ddb391e92a336babe079ed655.png

函数

numpy中,定义了很多的函数,常用的数学函数,比如:

np.sin(a)
np.sqrt(a)

4c09232b87f854accef3f744410d46b9.png

聚合函数

除了数学函数,还有聚合函数

86d6990e7c2d828dc52226cdd102e6c0.png

数组的索引机制

数组的每个元素都有索引,索引分为正向索引和负向索引

b = np.arange(15,21)
b[0]
b[1]
b[-1]
b[-2]

fd225d4521b3f935344bcf5e721d26ac.png

切片

切片,是指抽取数组的一部分元素,生成新的数组

切片操作也是基于索引

c = np.arange(10,16)
c[2:4]
c[::3]

7f304bf0ce150290679a370ebdb9fa7b.png

这里,相当于传入3个参数,第3个可以省略,默认是1

第一个省略,默认从0开始;第二个省略,默认是最大索引

5b83b69aa0d88351fdcc00652a81d11a.png

数组遍历

直接使用for循环遍历:

for i in c:
    print('i:',i)

e8193c96b2744616e08bb3d8166c1143.png

还可以使用

numpy.apply_along_axis( func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.
axis=0,表示按列进行处理;axis=1,表示按照行进行处理

可以按照某个轴,对每个元素进行处理

np.apply_along_axis(lambda x : x+1, axis=0, arr=c)

e752ebffe49dba4badb33d85dea56512.png
a = np.arange(10,19).reshape((3,3))
np.apply_along_axis(np.sum, axis=0, arr=a)
np.apply_along_axis(np.sum, axis=1, arr=a)

c1d7de221e619c742a1fbde48f3bdfe6.png

布尔数组

在对数组进行筛选或者选取元素的时候,前面说过切片,索引,还可以使用布尔数组

a
a>14
a[a>14]

21045f34982e53b125c78e9c92514cfe.png

数组连接

将多个数组进行连接,按行或者按列进行拼接

a = np.zeros((3,3))
b = np.ones((3,3))

np.vstack((a,b))
np.hstack((a,b))

38cde01d9f9ce2afbcc63235b5c81bab.png

多个数组之间的操作,使用column_stack()、row_stack()

数组切分

有拼接,也就有分割

a = np.arange(16).reshape((4,4))

np.hsplit(a,2)
np.vsplit(a,2)

fe6dde78e122abf06e84762d672a1167.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>