pareto最优解程序_pareto最优解(多目标智能算法要用到)

本文介绍了Pareto最优解在多目标优化中的应用,特别是在电力系统优化中的重要性。通过数学模型解释了多目标优化问题,并详细阐述了解之间的强帕累托支配、能帕累托支配和最优解的概念。最后,解释了帕累托最优解集和帕累托最优前沿的形成,指出在实际问题中通常存在多个帕累托最优解,需要根据具体需求进行决策。
摘要由CSDN通过智能技术生成

自己的方向是电力系统多目标优化,其中就要用到pareto最优解,多目标求解就会筛选出一个相对较优的解的集合,在这个集合里就要用到pareto找出相对优的解或者最优解。

多目标优化问题的数学模型一般可以写成如下形式

表示n个目标函数,目标是都使之达到最小, 

 是其变量的约束集合,可以理解为变量的取值范围,下面介绍具体的解之间的支配,占优关系。

1:解A优于解B(解A强帕累托支配解B)

假设现在有两个目标函数,解A对应的目标函数值都比解B对应的目标函数值好,则称解A比解B优越,也可以叫做解A强帕累托支配解B,举个例子,就很容易懂了

下图中代表的是两个目标的的解的情况,横纵坐标表示两个目标函数值,E点表示的解所对应的两个目标函数值都小于C,D两个点表示的解所对应的两个目标函数值,所以解E优于解C,D.

2:解A无差别于解B(解A能帕累托支配解B)

同样假设两个目标函数,解A对应的一个目标函数值优于解B对应的一个目标函数值,但是解A对应的另一个目标函数值要差于解B对应的一个目标函数值,则称解A无差别于解B,也叫作解A能帕累托支配解B,举个例子,还是上面的图,点C和点D就是这种情况,C点在第一个目标函数的值比D小,在第二个函数的值比D大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值