自己的方向是电力系统多目标优化,其中就要用到pareto最优解,多目标求解就会筛选出一个相对较优的解的集合,在这个集合里就要用到pareto找出相对优的解或者最优解。
多目标优化问题的数学模型一般可以写成如下形式
表示n个目标函数,目标是都使之达到最小,
是其变量的约束集合,可以理解为变量的取值范围,下面介绍具体的解之间的支配,占优关系。
1:解A优于解B(解A强帕累托支配解B)
假设现在有两个目标函数,解A对应的目标函数值都比解B对应的目标函数值好,则称解A比解B优越,也可以叫做解A强帕累托支配解B,举个例子,就很容易懂了
下图中代表的是两个目标的的解的情况,横纵坐标表示两个目标函数值,E点表示的解所对应的两个目标函数值都小于C,D两个点表示的解所对应的两个目标函数值,所以解E优于解C,D.
2:解A无差别于解B(解A能帕累托支配解B)
同样假设两个目标函数,解A对应的一个目标函数值优于解B对应的一个目标函数值,但是解A对应的另一个目标函数值要差于解B对应的一个目标函数值,则称解A无差别于解B,也叫作解A能帕累托支配解B,举个例子,还是上面的图,点C和点D就是这种情况,C点在第一个目标函数的值比D小,在第二个函数的值比D大。