特征融合篇 | YOLOv8 (ultralytics) 实现 YOLOv9 辅助可逆分支架构 | 附训练推理结构图 RepNCSPELAN4/ADown/SPPELAN/train/val

YOLOv9是Ultralytics在YOLOv8基础上改进的最新目标检测算法,通过引入辅助可逆分支架构(ARBA)提升性能。ARBA在CSPNet上增加可逆分支,结合残差块和门控单元,增强了特征提取。该算法广泛应用于通用目标检测、人脸检测、车辆检测等领域,并已在GitHub开源。
摘要由CSDN通过智能技术生成

1. 介绍

YOLOv9是Ultralytics公司于2023年4月推出的最新一代目标检测算法,在YOLOv8的基础上进行了诸多改进,包括引入了辅助可逆分支架构(Auxiliary Reversible Branch Architecture,ARBA)。ARBA通过引入可逆分支,增强了特征提取能力,提升了模型的性能。

2. 原理详解

ARBA的核心思想是将可逆分支引入到特征提取流程中,以增强特征提取能力。具体来说,ARBA在CSPNet骨干网络的基础上增加了可逆分支,可逆分支由多个残差块(Residual Block)和门控单元(Gate Unit)组成。残差块可以实现信息的残差学习,门控单元可以控制信息的流动。

ARBA的工作流程如下:

  1. **特征提取:**使用CSPNet骨干网络提取图像特征。
  2. **可逆分支:**将特征输入可逆分支进行处理。
  3. **特征融合:**将可逆分支的输出与主分支的输出进行融合。
  4. **预测:**使用三个预测头分别预测不同尺度的目标。

3. 应用场景解释

YOLOv9可广泛应用于各种目标检测任务,包括:

  • **通用目标检测:**检测图像中的各种物体,如人脸、车辆、动物等。
  • **人脸检测&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值