1. 介绍
YOLOv9是Ultralytics公司于2023年4月推出的最新一代目标检测算法,在YOLOv8的基础上进行了诸多改进,包括引入了辅助可逆分支架构(Auxiliary Reversible Branch Architecture,ARBA)。ARBA通过引入可逆分支,增强了特征提取能力,提升了模型的性能。
2. 原理详解
ARBA的核心思想是将可逆分支引入到特征提取流程中,以增强特征提取能力。具体来说,ARBA在CSPNet骨干网络的基础上增加了可逆分支,可逆分支由多个残差块(Residual Block)和门控单元(Gate Unit)组成。残差块可以实现信息的残差学习,门控单元可以控制信息的流动。
ARBA的工作流程如下:
- **特征提取:**使用CSPNet骨干网络提取图像特征。
- **可逆分支:**将特征输入可逆分支进行处理。
- **特征融合:**将可逆分支的输出与主分支的输出进行融合。
- **预测:**使用三个预测头分别预测不同尺度的目标。
3. 应用场景解释
YOLOv9可广泛应用于各种目标检测任务,包括:
- **通用目标检测:**检测图像中的各种物体,如人脸、车辆、动物等。
- **人脸检测&