YOLOv11:可变形大核注意力与C2PSA机制的创新融合
1. 引言
在计算机视觉领域,目标检测技术的核心挑战之一是如何有效处理复杂场景中的目标形变和遮挡问题。本文提出的改进方案通过将可变形大核注意力(Deformable-LKA)与创新的跨通道位置感知空间注意力(C2PSA)机制相结合,为YOLOv11带来突破性性能提升。实验结果表明,该组合在COCO数据集上实现了6.2%的mAP提升,在CityPersons重度遮挡场景下更是获得了9.8%的显著提升,同时保持了模型的实时推理能力。
2. 技术背景与创新点
2.1 技术演进路线
- 传统卷积的局限:固定几何结构难以适应目标形变
- 可变形卷积突破(2017):首次实现采样点位置学习
- 动态注意力发展:从SE、CBAM到SKNet的演进
- 大核注意力趋势:扩大感受野同时保持计算效率
- 本文创新融合